Volume 11, Issue 1 ((Spring and Summer) 2024)                   Iranian J. Seed Res. 2024, 11(1): 105-127 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mashreghi A, Gholamalipour Alamdari E, Avarseji Z, Rahemi Karizaki A. (2024). Evaluation of the allelopathic potential of barley (Hordeum spontaneum) on the germination morphophysiological, and biochemical characteristics of cress (Lepidium sativum). Iranian J. Seed Res.. 11(1), 105-127. doi:10.61186/yujs.11.1.105
URL: http://yujs.yu.ac.ir/jisr/article-1-611-en.html
Gonbad Kavous University , eg.alamdari@gonbad.ac.ir
Abstract:   (1088 Views)
Extended abstract
Introduction: Chemical compounds in plants include primary or secondary compounds. The allelopathic compounds are mainly of the secondary type, which are released by ways such as leaching, decomposition of plant residues, volatilization, and root exudation. Plants with allelopathic properties have a negative or even positive effect on the germination and growth of other plants by releasing substances in their surroundings. These effects depend on the type of organ, concentration, plant growth location, physiological maturity, etc.
Materials and Methods: An experiment was conducted to evaluate the allelopathic potential of wild barley (Hordeum spontaneum) weed on some germination, morphophysiological, and biochemical characteristics of a reference plant sensitive to allelochemicals, cress (Lepidium sativum), in 2021. This experiment was conducted in the form of a completely randomized design with three replications. The treatments included different concentrations of H. spontaneum aqueous extract at 11 levels (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%).
Results: The results showed that different concentrations of H. spontaneum aqueous extract had a significant decreasing effect on the percentage and rate of seed germination, radicle and shoot length, seedling length vigor index, radicle and shoot dry weight, as well as photosynthetic pigments (i.e., chlorophyll a, b, total, and carotenoids) of cress. Their effectiveness was dependent on the concentration threshold of the aqueous extract. In contrast, the content of proline amino acid , soluble sugars, ion leakage, catalase activity, guaiacol peroxidase enzymes, the concentration of malondialdehyde, and phenolic compounds showed an increasing trend compared with the control. In most cases, the highest increase in these compounds was obtained at the 100% aqueous extract concentration of H. spontaneum. This indicates the oxidative stress and high cytotoxicity caused by harmful compounds present in the aqueous extract of H. spontaneum.
Conclusions: According to the results of this experiment, it can be decucted that the aqueous extract of H. spontaneum, due to its allelopathic properties, prevented germination and seedling growth of L. sativum. Therefore, according to the proof of the harmful effect of H. spontaneum and its high biomass, it may be possible to introduce the bioactive compounds present in this plant for the production of environmentally friendly herbicides or even the potential to produce new formulations of synthetic herbicides in case its positive effect on other species is proven.

Highlights:
  1. The difference in the effect of different concentrations of Hordeum spontaneum weed aqueous extract on germination and seedling growth of a reference plant sensitive to the allelochemicals, Lepidium sativum, is related to their concentration threshold.
  2. The significant decrease in germination characteristics and photosynthetic pigments of L. sativum indicates the intensity of oxidative stress caused by the harmful compounds in the aqueous extract of H. spontaneum.
  3. The allelopathic characteristics of H. spontaneum weed can be a suitable candidate for the production of biological herbicides.
Full-Text [PDF 733 kb]   (366 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2024/04/29 | Revised: 2024/07/10 | Accepted: 2024/08/27 | ePublished: 2024/09/21

References
1. Aasifa, G. and Badruzzaman, S.M. 2014. Evaluation of allelopathic effect of Eclipta alba (L.) Hassk. on biochemical activity of Amaranthus spinosus L., Cassia tora L. and Cassia sophera L. African Journal of Environmental Science and Technology, 8(1): 1-5. [DOI:10.5897/AJEST2013.1617]
2. Abdul-Baki, A.A. and Anderson, J.D. 1973. Vigor determination in soybean seed by multiple criteria. Journal of Crop Science, 13: 630-633. [DOI:10.2135/cropsci1973.0011183X001300060013x]
3. Abu-Romman, S., Shatnawi, M. and Shibli, R. 2010. Allelopathic effects of spurge (Euphorbia hierosolymitana) on wheat (Triticum durum). American-Eurasian Journal of Agriculture and Environmental Science, 7(3): 298-302.
4. Aebi, H.E. 1984. Catalase in vitro. Method in enzymology, 105: 121-126. [DOI:10.1016/S0076-6879(84)05016-3] [PMID]
5. Amoo, S.O., Ojo, A.U. and Van Staden, J. 2008. Allelopathic potential of Tetrapleura tetraptera leaf extracts on early seedling growth of five agricultural crops. South African Journal of Botany, 74: 149-152. [DOI:10.1016/j.sajb.2007.08.010]
6. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-15. [DOI:10.1104/pp.24.1.1] [PMID] []
7. Asgarani, E. and Barati, F. 2019. Review of technology for recovery and removal of phenolic compounds from olive wastewater. Journal of Water and Sustainable Development, 5(2): 37-48. [In Persian]
8. Asgarpour, R., Khajeh-Hosseini, M. and Khorramdel, S. 2015. Effect of aqueous extract concentrations of saffron organs on germination characteristics and preliminary growth of three weed species. Journal of Saffron Research, 3(1): 81-96. [In Persian]
9. Ashraf, R., Sultana, B., Yaqoob, S. and Iqbal, M. 2017. Allelochemicals and crop management: a review. Current Science, 3(1): 1-13.
10. Ataei, A., Gholamalipour Alamdari, E., Avarseji, Z. and Rahemi Karizaki, A. 2021. Study of allelopathic effect of aqueous extract of various organs of Fumaria parviflora on morphological, physiological and biochemical characteristics of Lolium rigidum. Journal of Applied Biology, 34(4): 94-112. [In Persian]
11. Azarpanah, A., Alizadeh, O. and Dehghanzadeh, H. 2013. Investigation on proline and carbohydrates accumulation in Zea mays L. under water stress condition. Extreme life, biospeology and asterobiology. International Journal of the Bioflux Society, 5(1): 47-54.
12. Babu, R.C. and Kandasamy, O.S. 1997. Allelopathic effect of Eucalyptus globulus Labill on Cyperus rotundus L. and Cynodon dactylon L. Pers. Journal of Agronomy and Crop Science, 179(2): 123-126. [DOI:10.1111/j.1439-037X.1997.tb00507.x]
13. Bais, H.P., Epechedu, R.V., Gilroy, S., Callaway, R.M. and Vivanco, J.M. 2003. Allelopathy and extract plant invasion: from molecules and genes to species interactions. Science 301: 1377-1380. [DOI:10.1126/science.1083245] [PMID]
14. Bates, L.S., Walderen, R.D. and Taere, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
15. Berhow, M.A. and Vaughn, S.F. 1999. Higher plant flavonoids: biosynthesis and chemical ecology. In: principles and practices in plant ecology. CRC Press, Pp. 423-438. [DOI:10.1201/9780203742181-31]
16. Bogatek, R. and Gniazdowska, A. 2007. ROS and phytohormones in plant-plant allelopathic interaction. Plant Signaling and Behavior, 2(4): 317-318. [DOI:10.4161/psb.2.4.4116] [PMID] []
17. Bogatek, R., Gniazdowka, A., Stepien, J. and Kupidlowska, E. 2005. Convolvulus arvensis allelochemicals modeofactionin germination wheat seeds. Proceedings of the 4th world Congress on Allelopathy, (August, 11-14), Wagga, Pp. 263-266.
18. Bundig, C., Vu, T.H., Meise, P., Seddig, S., Schum, A. and Winkelmann, T. 2016. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. Journal of Agronomy and Crop Science, 203: 206-218. [DOI:10.1111/jac.12186]
19. Caceres, A. 2000. Calidad de la material prima para la elaboracion de productos fitofarma ceuticas. Primer Congreso International FITO 2000 Por la investigacion, conservacion y diffusion del conocimiento de las plantas medicinals 27-30 de septiembre, Lima, Peru.
20. Chance, B. and Maehly, A. 1955. Assay of catalases and peroxidases. Methods in enzymology, 2: 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
21. Chaparzadeh, N., Najjar- Khodabakhsh, A., Pazhang, M. and Zarandi- Miandoab, L. 2015. Effect of salinity and ascorbic acid on growth, water and osmotic relations of Lepidium sativum. Iranian Journal of Plant Biology, 7(24): 1-4. [In Persian]
22. Cheng, F. and Cheng, Z. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6: e 1020. [DOI:10.3389/fpls.2015.01020]
23. Chi-Ming, Y., Chyoung-Ni, L. and Chang-Hung, C. 2002. Effect of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedling: I. Inhibition of supply-orientation. Botanical Bulletin of Academia Sinica, 43: 299-304.
24. De Mattos Ribeiro, V., Spiassi, A., Marcon, T.R., de Lima, G.P., Corsato, J.M. and Fortes, A.M.T. 2017. Antioxidative enzymes of Cucumis sativus seeds are modulated by Leucaena leucocephala extracts. Acta Scientiarum. Biological Sciences, 39(3): 373-380. [DOI:10.4025/actascibiolsci.v39i3.34801]
25. Dixit, V., Pandey, V. and Shyam, R. 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum cv. Azad). Journal of Experimental Botany, 52(358): 1101- 1109. [DOI:10.1093/jexbot/52.358.1101] [PMID]
26. El- Shora, H.M. and Abd El- Gawad, A.M. 2015. Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresenius Environmental Bulletin, 24: 386-393.
27. Elisante, F., Tarimo, M.T. and Ndakidemi, P.A. 2013. Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. American Journal of Plant Sciences, 4: 2332-2339. [DOI:10.4236/ajps.2013.412289]
28. Enteshari, S.H. and Ahrabi, F. 2011. Effect of the coumarin on some physiological and biochemical indexes of Conola-Hiola variety. Journal of Plant Biology, 3(10): 26- 23. [In Persian]
29. FAO. 2010. The Lurking menace of weeds. (Web site)
30. Farhoudi, R. and Lee, D.J. 2012. Evaluation of safflower (Carthamus tinctorius L. cv. Koseh) extract on germination and induction of α-amylase activity of wild mustard (Sinapis arvensis L.) seeds. Seed Science and Technology, 40: 2-6. [DOI:10.15258/sst.2012.40.1.17]
31. Farhoudi, R., Modhej, A. and Alavi, R. 2014. Effects of allelochemical compounds of barley (Hordeum vulgare L.) on seed germination, seedling growth and some antioxidant activities of Chenopodium album. Journal of Plant Protection, 28(2): 234-241. [In Persian]
32. Ghareman, A. 1996. General code of families and genera of flora of Iran. Publications of the Iran- Research Institute of Forests and Rangelands, 222 p. [In Persian]
33. Gholami, Sh. and Amini Dehaghi, D. 2022. The effect of priming with different concentrations of selenium on germination indices of quinoa seeds and seedlings. Journal of Crops Improvement, 24(1): 85-95. [In Persian]
34. Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O. and Pirdashti, H. 2018. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Journal of Plant Biology, 20(4): 729-736. [In Persian] [DOI:10.1111/plb.12717] [PMID]
35. Goran, Y.A.R. and Sakri, F.A. 2009. Allelopathic effect of barley (Hordeum vulgare L.) water extract of shoot, root and soil beneath plants on seed germination and seedlings of wheat, barley cultivars and some weeds. Journal of Pure and Applied Sciences, 21(4): 10-19:4.
36. Gulzar, A. and Siddiqui, M.B. 2017. Allelopathic effect of Calotropis procera (Ait.) R. Br. on g growth and antioxidant activity of Brassica oleracea var. Botrytis. Journal of the Saudi Society of Agricultural Sciences, 16(4): 375-382. [DOI:10.1016/j.jssas.2015.12.003]
37. Hamidi, R. 2007. The effects of wild leaf and stem saps on germination and seedling growth of winter wheat. 2nd Iranian Weed Science Conference, Mashhad. [In Persian]
38. Hardgree, S.P., and Van Vactor, S.S. 2000. Germination and emergence of primed grass seeds under field and simulated-field temperature regimes. Annals of Botany, 85(3): 379- 390. [DOI:10.1006/anbo.1999.1076]
39. Harlan J.R. 1992. Crops and man. Madison, Wisconsin: University of Wisconsin Press.
40. Hatami Hampa, A., Javanmard, A., Alebrahim, M. and Sofalian, O. 2018. Allelopathic effects of aqueous extracts from sorghum (Sorghum bicolor L.) and Russian knapweed (Acroptilon repens L.) on seedling growth and enzymes activity of wheat, sugar beet, common lambsquarters and redroot pigweed. Journal of Iranian Plant Protection Research, 32(1): 101-119. [In Persian]
41. Heivachi, M., Gholamalipour Alamdari, E., Avarseji, Z. and Habibi, M. 2023. Effect of the Lactuca serriola L. extract on the cytogenetic behaviors of Crocus sativus L. roots and its allelopathic potential. South African Journal of Botany, 160: e 525-534. [DOI:10.1016/j.sajb.2023.07.026]
42. Herro, J.L. and Callawa, R.M. 2003. Allelopathy and exotic plant invasion. Plant and Soil, 256: 29-39. [DOI:10.1023/A:1026208327014]
43. Hosseini-Moghaddam, M., Moradi, A., Piri, R., Glick, B.R., Fazeli-Nasab, B. and Sayyed, R.Z. 2024. Seed coating with minerals and plant growth-promoting bacteria enhances drought tolerance in fennel (Foeniculum vulgare L.). Biocatalysis and Agricultural Biotechnology, 58: 1-12. [DOI:10.1016/j.bcab.2024.103202]
44. Hosseinzadeh, M., Kiarostami, Kh., Ilkhanizadeh, M. and Saboora, A. 2009. A study on allelopathic compounds derived from Hordeum spontaneum on carbohydrates, proteins and some enzyme of wheat (Triticum aestivum L.). Plant Researches (Iranian Journal of Biology), 22(3): 392-406. [In Persian]
45. Ivan, C., Sulmon, C., Gwenola, G. and Amrani, A. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 57(3): 449-459. [DOI:10.1093/jxb/erj027] [PMID]
46. Kala, S. 2015. Effect of NaCl salt stress on antioxidant enzymes of isabgol (Plantago ovata forsk.) genotypes. International Journal of Food Science and Technology Research, 4(2): 40-43.
47. Kalantar, A. and Naghashbandi, N. 2008. Chemical stress induced by heliotrope (Helitropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes. Pakistan Journal of Biological Sciences, 11(6): 915- 919. [DOI:10.3923/pjbs.2008.915.919] [PMID]
48. Khalili Mahalleh, J., Jalili, F. and Hosseini, N. 2014. Effect of four kinds of allelopathic weed on the germination and growth of forage sorghum. Journal of Research in Crop Science, 5(20): 107-122. [In Persian]
49. Khandakar, A.L. and Bradbeer, J.W. 1983. Jute seed quality. Dhaka, Bangladesh Agricultural Research Council. Dhaka, Bangladesh.
50. Kochert, G. 1978. Carbohydrate determination by the phenol-sulfuric acid method. Handbook of Phycological Methods: Physiological and Biochemical Methods, Cambridge University Press.
51. Kohli, R.K., Singh, H.P. and Batish, D.R. 2001. Allelopathy in agro-ecosystems. Food Products Press, USA, 447 p.
52. Kremer, R.J. and Ben-Hammouda, M. 2009. Allelopathic plants. 19. Barley (Hordeum vulgare L.). Allelopathy Journal, 24(2): 225-242.
53. Lorenzo, P., Palomera-Pe'rez, A., Reigosa, M.J. and Gonza'lez, L. 2011. Allelopathic interference of invasive Acacia dealbata Link on the physiological parameters of native understory species. Journal of Plant Ecology, 212:403-411. [DOI:10.1007/s11258-010-9831-9]
54. Macias, F.A. 1995. Allelopathy in the search for natural herbicides models. In: allelopathy. Organisms, Processes and Applications (eds.), American Chemical Society, pp: 310-329. [DOI:10.1021/bk-1995-0582.ch023]
55. Mahdavikia, F., Saharkhiz, M.J. and Karami, A. 2017. Defensive response phenolic compounds of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha piperita L.). Scientia Horticulturae, 214: 133-140. [DOI:10.1016/j.scienta.2016.11.029]
56. Makizadeh Tafti, M. and Farhodi, R. 2017 Investigating the allelopathic effect of aqueous extract of barley on seedling growth and cell membrane stability of wild oat and rye weeds. Journal of Plant Production Science, 7(1): 65-72. [In Persian]
57. Malick, C.P. and Singh, M.B. 1980. In plant enzymology and histo enzymologhy. Kalyani Publishers, New Dehli, 286 p.
58. Mighani, F. 2003. Allelopathy. Pajouhesh and Sazandegi Publisher, 256 p. [In Persian]
59. Mirsky, S.B., Ryan, M.R., Teasdal, J.R., Curran. W.S., Reberg-Horton, C.S., Spargo, J.T., Wells, M.S., Keene, C.L. and Moyer, J.W. 2013. Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the eastern United States. Journal of Weed Technology, 27: 193-200. [DOI:10.1614/WT-D-12-00078.1]
60. Mohamed, F.I. and El-Ashery, Z.M. 2012. Cytogenetic effect of allelochemicals of Brassica nigra extract on Pisum sativum. World Applied Sciences Journal, 20(3): 344-353.
61. Moradi, A., Hoseini-Moghadam, M. and Piri, R. 2018. Effect of seed inoculation with Plant Growth Promoting Rhizobactria (PGPR) on some germination, biochemical indices and element contents of fennel (Foeniculum vulgare L.) under salinity stress. Iranian Journal of Field Crop Science, 49(3): 151-165. [In Persian].
62. Nielsen, K.A., Olsen, C.E. Pontoppidan, K. and Moller, B.L. 2002. Leucine- derived cyano glucosides in barley. Journal of Plant Physiology, 129(3): 1066-1075. [DOI:10.1104/pp.001263] [PMID] []
63. Regosa, M. and Pedrol, N. 2002. Allelopathy from molecules to ecosystems. Science publishers' GNC. NH. USA, pp. 12-195.
64. Rice, E.L. 1984. Allelopathy. 2nd Edition, Academic Press, New York, 422 p.
65. Safahani, A.R. and Ghooshchi, F. 2014. Allelopathic effects of aqueous and residue of different weeds on germination and seedling growth of wheat. The Journal of Plant Research (Iranian Journal of Biology), 27(1): 100-109. [In Persian]
66. Siddiqui, Z.S. and Zaman, A.U. 2005. Effects of Capsicum leachates on germination, seedling growth and chlorophyll accumulation in Vigna radiata L. Wilczek seedlings. Pakistan Journal of Botany, 37: 941-947.
67. Singh, A., Singh, D. and Singh, N.B. 2009. Allelochemical stress produced by aqueous leachate of Nicotiana plumbaginifolia Viv. Plant Growth Regulation, 58: 163-171. [DOI:10.1007/s10725-009-9364-1]
68. Singh, T.N., Paleg, I.G. and Aspinall, D. 1973. Stress metabolism I. Nitrogen metabolism and growth in the barley plant during water stress. Australian Journal of Biological Sciences, 26(1): 45-56. [DOI:10.1071/BI9730045]
69. Sottero, B., Leonarduzzi, G., Testa, G., Gargiulo, S., Poli, G. and Biasi, F. 2019. Lipid oxidation derived aldehydes and oxysterols between health and disease. European Journal of Lipid Science and Technology, 121(1): e 1700047. [DOI:10.1002/ejlt.201700047]
70. Tripathi, S., Tripathi, A. and Kori, D.C. 1999. Allelopathic evaluation of Tectona grandis leaf, root and soil aqueous extracts on soybean. Indian Journal of Forestry, 22(4): 366-374.
71. Valentovic, P., Luxova, M., Kolarovi, L. and Gasparikora, O. 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relation in two maize. Plant Soil Environment, 52(4):186-191. [DOI:10.17221/3364-PSE]
72. Verdeguer, M., García- Rellán, D., Boira, H., Pérez, E., Gandolfo, S. and Blázquez, M.A. 2011. Herbicidal activity of Peumus boldus and Drimys winterii essential oils from Chile. Molecules, 16: 403-411. [DOI:10.3390/molecules16010403] [PMID] []
73. Wang, C., Liu, J. and Zhou, J. 2017. N deposition affects allelopathic potential of Amaranthus retroflexus with different distribution regions. Anais da Academia Brasileira de Ciências, 89(2): 919-926. [DOI:10.1590/0001-3765201720160513] [PMID]
74. Yaghoobi, M., Sanikhani, M., Samimi, Z. and Kheiry, A. 2022. Selection of a suitable solvent for bioactive compounds extraction of myrtle (Myrtus communis L.) leaves using ultrasonic waves. Journal of Food Processing and Preservation, 46(3): e16357. [DOI:10.1111/jfpp.16357]
75. Ziaebrahimi, L., Khavari- Nejad, R.A., Fahimi, H. and Nejadsatari, T. 2007. Effects of aqueous eucalyptus extracts on seed germination, seedling growth and activities of peroxidase and polyphenoloxidase in three wheat cultivar seedlings (Triticum aestivum L.). Pakistan Journal of Biological Sciences, 10(19): 3415-3419. [DOI:10.3923/pjbs.2007.3415.3419] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.