Volume 10, Issue 2 ((Autumn & Winter) 2024)                   Iranian J. Seed Res. 2024, 10(2): 1-20 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei A, Ghaderi-Far F, Sadeghipour H R. (2024). Impacts of priming on germination and vigor of safflower (Carthamus tinctorius) seeds during artificial deterioration. Iranian J. Seed Res.. 10(2), : 1 doi:10.61186/yujs.10.2.1
URL: http://yujs.yu.ac.ir/jisr/article-1-576-en.html
Gorgan University of Agricultural Sciences and Natural Resources , farshidghaderifar@gau.ac.ir
Abstract:   (825 Views)
Extended Abstract
Introduction: Safflower seeds are rich in unsaturated fatty acids with a high capacity for peroxidation, which have a high potential to reduce germination and seed vigor during the storage period. Therefore, Introducing appropriate methods to preserve or improve their germplasm during storage would be advantageous. The aim of this study was to investigate the effects of seed priming on germination and vigor of safflower seeds (Sofeh and Sina cultivars).
Materials and Methods: A three-factor experiment was conducted in a completely randomized design with three replications before and after artificial deterioration. The experimental factors included controlled deterioration of seeds at 45°C in six levels (no deterioration, 1, 2, 3, 4, and 6 days) and priming in four levels (no prime, hydropriming, salicylic acid 50 mg/l and sodium chloride 5 percent).
Results: Artificial aging strongly and linearly reduced the germination ability of safflower seeds, and germinability and seed vigor reach zero in a time interval which lasts between 2.5 to 4.5 days (depending on the treatment and the investigated trait). The use of priming prior to artificial aging was more advantageous than priming after artificial aging. In addition, priming with salicylic acid was more useful compared to other priming treatments.
Conclusion: Priming of safflower seeds before storage would result in the extended shelf-life of the stored seeds while also preserving the seed germination potential. 

  1. The effect of priming on germination and vigor of safflower seeds before and after artificial deterioration was compared and investigated.
  2. The effect of priming before and after artificial deterioration on the improvement of safflower seed quality varied in different cultivars.
Article number: 1
Full-Text [PDF 855 kb]   (132 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2023/02/8 | Revised: 2024/06/23 | Accepted: 2023/03/11 | ePublished: 2024/06/9

1. Afrosheh, R., Balouchi, H. Movahhedi Dehnavi, M. Gharineh, M.H. 2018. The effects of salicylic acid and seed deterioration on germination indices and antioxidant enzymes changes of Carthamus tinctorius L. cv. Soffeh seed. Iranian Journal of Seed Science and Technology, 7(1): 53-64. [In Persian with English Summary]
2. Agacka-Mołdoch, M., Arif, M.A.R. Lohwasser, U. Doroszewska, T. Qualset, C. and Borner, A. 2016. The inheritance of wheat grain longevity: a comparison between induced and natural ageing. Journal of Applied Genetics, 57: 477-481. [DOI:10.1007/s13353-016-0348-3] [PMID]
3. Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Seed Science Research, 14(2): 93-107. [DOI:10.1079/SSR2004159]
4. Bentsink, L., Alonso-Blanco, C. Vreugdenhil, D. Tesnier, K. Groot, S.P.C. and Koornneef, M. 2000. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of arabidopsis. Plant Physiology, 124(4): 1595-1604. [DOI:10.1104/pp.124.4.1595] [PMID] []
5. Bewley, J.D., Bradford, K.J. Hilhorst, H.W.M. and Nonogaki, H. 2013. Seeds: Physiology of development, germination and dormancy, 3rd Edition. Springer. New York Heidelberg Dordrecht London, 392 p. [DOI:10.1007/978-1-4614-4693-4]
6. Bruggink, G., Ooms, J. and Van Der Toorm, P. 1999. Induction of longevity in primed seeds. Seed Science Research, 9: 49-53. [DOI:10.1017/S0960258599000057]
7. Colville, L., Bradley, E.L. Lloyd, A.S. Pritchard, H.W. Castle, L. and Kranner, I. 2012. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and maillard reactions in seed deterioration during ageing and desiccation stress. Journal of Experimental Botany, 63(18): 6519-6530. [DOI:10.1093/jxb/ers307] [PMID] []
8. Crawford, A.D., Hay, F.R. Plummer, J.A. Probert, R.J. and Steadman, K.J. 2013. One-step fitting of seed viability constants for two Australian plant species, Eucalyptus erythrocorys (Myrtaceae) and Xanthorrhoea preissii (Xanthorrhoeacea). Australian Journal of Botany, 61: 1-10. [DOI:10.1071/BT12171]
9. Davies, R.M., Newton, R.J. Hay, F.R. and Probert, R.J. 2016. 150-seed comparative longevity protocol a reduced seed number screening method for identifying short-lived seed conservation collections. Seed Science and Technology, 44: 569-584. [DOI:10.15258/sst.2016.44.3.13]
10. El-Maarouf Bouteau, H., and Bailly, C. 2008. Oxidative signalling in seed germination and dormancy. Plant Signal Behav, 3:175-182. [DOI:10.4161/psb.3.3.5539] [PMID] []
11. Galleschi, L., Capocchi, A. Ghiringhelli, S. Saviozzi, F. Calucci, L. Pinzino, C. 2002. Antioxidants, free radicals, storage proteins, and proteolytic activities in wheat (Triticum durum) seeds during accelerated aging. Journal of Agriculture and Food Chemistry, 50(19): 5450-5457. [DOI:10.1021/jf0201430] [PMID]
12. Gao, J., Fu, H. Zhou, X. Chen, Z. Luo, Y. Cui, B. 2016. Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiology Biochemistry, 103: 31-44. [DOI:10.1016/j.plaphy.2016.02.026] [PMID]
13. Garg, N, and Manchanda, G. 2009. ROS generation in plants: boon or bane? Plant Biosystem, 143: 81-96. [DOI:10.1080/11263500802633626]
14. Gerna, D., Ballesteros, D. Arc, E. Stöggl,W. Seal, C.E. Marami-Zonouz, N.N, Sun Na.C. Kranner, I. and Roach, T. 2022. Does oxygen affect ageing mechanisms of Pinus densiflora seeds? a matter of cytoplasmic physical state. Journal of Experimental Botany, 73(8): 2631-2649. [DOI:10.1093/jxb/erac024] [PMID]
15. Ghaderi-Far, F., Alimagham, S.M. Kameli, A.M. and Jamali, M. 2012. Isabgol (Plantago ovata Forsk) seed germination and emergence as affected by environmental factors and planting depth. International Journal of Plant Production, 6: 185-194.
16. Ghadrifar, F., and Gerzin, M. 2018. Applied researches in seed technology. Publications of Gorgan University of Agricultural Sciences and Natural Resources, 240 p.
17. Ghadrifar, F., and Soltani, A. 2016. Seed control and certification. Publications University of Mashhad, 200 p.
18. Goel, A., and Sheoran, I.S. 2003. Lipid peroxidation and peroxide-scavenging enzymes in cotton seeds under natural ageing. Biologia Plantarum, 46: 429-434. [DOI:10.1023/A:1024398724076]
19. Gorzin, M., Ghaderi‑Far, F. Sadeghipour, H.R. Zeinali, E. 2020. Induced thermo-dormancy in rapeseed (Brassica napus L.) cultivars by sub- and supra-optimal temperatures. Journal of Plant Growth Regulation, 1-14. [DOI:10.1007/s00344-020-10266-2]
20. Hampton, J.G. and Tekrony, D.M. 1995. Handbook of vigour test methods. The International Seed Testing Association, Zurich (Switzerland).
21. Hussain, M.I., Lyra, D.A. Farooq, M. Nikoloudakis, N. and Khalid, N. 2016. Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36: 1-31. [DOI:10.1007/s13593-015-0344-8]
22. International Seed Testing Association (ISTA). 2006. Handbook on seedling evaluation, 267 p.
23. International Seed Testing Association. 2010. International Rules, for Seed Testing.Seed Science and Technology, 13: 299-513.
24. Jamali, M., Ghaderi-Far, F. Sadeghipour, H.R. Soltani, E. Alimagham, S.M. 2017. Evaluation of germination of wheat seeds with different levels of seed vigor by using the hydrotime model. Environmental Stresses in Crop Science, 10(3): 403-413.
25. Job, C., Rajjou, L. Lovigny, Y. Belghazi, M. Job, D. 2005. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology, 138: 790-802 [DOI:10.1104/pp.105.062778] [PMID] []
26. Kibinza, S., Bazin, J. Bailly, C. Farrant, J.M. Oise Corbineau, F. El-Maarouf-Bouteaua. H. 2011. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Science, 181: 309-315. [DOI:10.1016/j.plantsci.2011.06.003] [PMID]
27. Kumar, S., Ambreen, H. T Variath, M.R Rao, A. Agarwal, M. Kumar, A. 2016. Utilization of molecular, phenotypic, and geographical diversity to develop compact composite core collection in the oilseed crop, safflower (Carthamus tinctorius L.) through maximization strategy. Front, Plant Science, 7: 1554. [DOI:10.3389/fpls.2016.01554] [PMID] []
28. Kuppusamy, N., and Ranganathan, U. 2014. Storage potential of primed seeds of okra (Abelmoschus esculentus) and beet root (Beta vulgaris). Australian Journal of Crop Science, 8(9): 1290-1297.
29. Latifzadeh Shahkhali, M., Ehtehsami, S.M.R. Moradi, F. 2022. Investigating the effects of natural and artificial seed deterioration on reactive oxygen species, antioxidant enzymes, and seed germination characteristics in local and improved rice (Oryza sativa) cultivars derived from the farms in Guilan province. Iranian Journal of Seed Research, 8(2): 21-40. [In Persian with English Summary] [DOI:10.52547/yujs.8.2.21]
30. Li, D.Z., and Pritchard, H.W. 2009. The science and economics of ex situ plant conservation. Trends Plant Science, 14(11): 614-621. [DOI:10.1016/j.tplants.2009.09.005] [PMID]
31. Malek, M., Ghaderi-Far, F. Torabi, B. sadeghipour, H.R. 2019. Rapeseed seed viability reaction to priming treatments and drying conditions of primed seeds. Journal of Agronomy, 22(1): 27-42. [In Persian with English Summary]
32. Malek, M. Ghaderi-Far, F. Torabi, B. Sadeghipour, H.R. 2020. Quantification of changes in relative humidity and seed moisture contents of canola cultivars under different temperatures using hygroscopic equilibrium curve. Iranian Journal of Seed Research, 7(1): 39-52. [In Persian with English Summary] [DOI:10.29252/yujs.7.1.39]
33. Malek, M. Ghaderi-Far, F. Torabi, B. Sadeghipour, H.R. 2020. The effect of priming on seed viability of canola (Brassica napus) cultivars under different storage conditions. Iranian Journal of Seed Research, 6(2): 45-60. [In Persian with English Summary] [DOI:10.29252/yujs.6.2.45]
34. McDonald, M.B. 1999. Seed deterioration: physiology, repair and assessment. Seed Science and Technology, 27: 177-237.
35. Mubshar, H., Farooq, M. Basra, S.M.A. Ahmad, N. 2006 Influence of seed priming techniques on the seedling establishment, yield and quality of hybrid Sunflower. International Journal of Agriculture and Biology, 8(1): 14-18.
36. Nagel, M., Kranner, I. Neumann, K. Rolletschek, H. Seal, C.E. Colville, L. Fernández-Marín, B. and Börner, A. 2015. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant Cell and Environment, 38(6): 1011-1022. [DOI:10.1111/pce.12474] [PMID]
37. Nagel, M., Rosenhauer, M. Willner, E. Snowdon, R.J. Friedt, W. and Börner, A. 2011. Seed longevity in oilseed rape (Brassica napus L.) genetic variation and QTL mapping. Plant Genetic Resources, 9(2): 260-263. [DOI:10.1017/S1479262111000372]
38. Nagel, M., Seal, C.E. Colville, L. Rodenstein, A. UN, S. Richter, J. 2019. Wheat seed ageing viewed through the cellular redox environment and changes in pH. Free Radical Research, 53(6): 641-654. [DOI:10.1080/10715762.2019.1620226] [PMID]
39. Nagel, M., Vogel, H. Landjeva, S. Buck-Sorlin, G. Lohwasser, U. Scholz, U. and Börner, A. 2009. Seed conservation in ex situ genebanks-genetic studies on longevity in barley. Euphytica, 170(1-2): 5-14. [DOI:10.1007/s10681-009-9975-7]
40. Nakaune, M., Hanada, A. Yin, Y.G. Matsukura, C. Yamaguchi, S. Ezura, H. 2012. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiology and Biochemistry, 52: 28-37. [DOI:10.1016/j.plaphy.2011.11.005] [PMID]
41. Narayana Murthy, U.M., and Sun, W.Q. 2000. Protein modification by amadori and maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. Journal of Experimental Botany, 51(348): 1221-1228. [DOI:10.1093/jexbot/51.348.1221] [PMID]
42. Piri, R., Moradi, A. Hoseini Moghaddam, M. 2018. Effect of accelerated aging and seed priming on germination and some biochemical indices of cumin (Cuminum Cyminum L.). Iranian Journal of Seed Science and Research, 5(1): 69-81. [In Persian with English Summary]
43. Prasad, M,. Kodde, J. Angenent, G.C. De vos, R.C.H. Diez-Simon, C. Mumm, R. Hay, F.R. Siricharoen, S. Yadava D.K. Groot S.P.C. 2022. Experimental rice seed aging under elevated oxygen pressure: Methodology and mechanism. Frontiers in Plant Science, 13: 1050411. [DOI:10.3389/fpls.2022.1050411] [PMID] []
44. Probert, R.J., Daws, M.I. and Hay, F.R. 2009. Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Annals of Botany, 104(1): 57-69. [DOI:10.1093/aob/mcp082] [PMID] []
45. Ramezani Yeganeh, M., Jafari, A.A. Sani B. 2019. The effects of priming on seed vigority and seedling growth of deteriorated seeds in three Astragalus species. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 27(1): 59-70. [In Persian with English Summary]
46. Ratajczak, E., Pukacka, S. 2005. Decrease in beech (Fagus sylvatica) seed viability caused by temperature and humidity conditions as related to membrane damage and lipid composition. Acta Physiologiae Plantarum, 27: 3-12. [DOI:10.1007/s11738-005-0030-6]
47. Rehman Arif, M.A., Nagel, M. Neumann, K. Kobiljski, B. Lohwasser, U. and Börner, A. 2012. Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica, 186(1): 1-13. [DOI:10.1007/s10681-011-0471-5]
48. Roach, T., Nagel, M. Börner, A. Eberle, C. and Kranner, I. 2018. Changes in tocochromanols and glutathione reveal differences in the mechanisms of seed ageing under seed bank conditions and controlled deterioration in barley. Environmental and Experimental Botany, 156: 8-15. [DOI:10.1016/j.envexpbot.2018.08.027]
49. Sano, N., Rajjou, L. North, H.M. Debeaujon, I. Marion-Poll, A. and Seo, M. 2016. Staying alive: Molecular aspects of seed longevity. Plant and Cell Physiology, 57: 660-674. [DOI:10.1093/pcp/pcv186] [PMID]
50. Schwember, A.R., and Bradford, K.J. 2010. Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany, 61(15): 4423-4436. [DOI:10.1093/jxb/erq248] [PMID] []
51. Sew, Y.S., Stroher, E. Fenske, R. and Millar, A.H. 2016. Loss of mitochondrial malate dehydrogenase activity alters seed metabolism impairing seed maturation and post-germination growth in arabidopsis. Plant Physiology, 171: 849-863.
52. Shuai, H., Meng, Y. Luo, X. Chen, F. Zhou, W. Dai, Y. 2017. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/ abscisic acid (GA/ABA) ratio. Scientific Reports, 7: 1-11. [DOI:10.1038/s41598-017-13093-w] [PMID] []
53. Siddiqi, E.H., Ashraf, M. Al-Qurainy, F. and Akram, N.A. 2011. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). Journal of the Science of Food and Agriculture, 91(15): 2785-2793. [DOI:10.1002/jsfa.4522] [PMID]
54. Taghi Zoghi, S., Soltani, E. Alahdadi, I. Sadeghi, R. 2018. The effects of different priming methods on the storability and germination under salinity stress in rapeseed (Brassica napus) line Karaj 3. Iranian Journal of Seed Research, 4 (2): 79-91. [In Persian with English Summary] [DOI:10.29252/yujs.4.2.79]
55. Tesnier, K., Strookman-Donkers, H.M. van Pijlen, J.G. van der Geest, A.H.M. Bino, R.J. Groot, S.P.C. 2002. A controlled deterioration test for Arabidopsis thaliana reveals genetic variation in seed quality. Seed Science and Technology, 30: 149-165.
56. Yan, M. 2017. Prolonged storage reduced the positive effect of hydropriming in Chinese cabbage seeds stored at different temperatures. South African Journal of Botany, 111: 313-315. [DOI:10.1016/j.sajb.2017.04.005]
57. Zhuang, Y., Dong, J. He, X. Wang, J. Li, C. Dong, L. Zhang, Y. Zhou, X. Wang, H. Yi, Y. and Wang, S. 2022. Impact of heating temperature and fatty acid type on the formation of lipid oxidation products during thermal processing. Frontiers in Nutrition, 9: 913297. [DOI:10.3389/fnut.2022.913297] [PMID] []
58. Zuo, J. H., Chen, F.Y. Li, X.Y. Xia, X.C. Cao, H. Liu, J.D. and Xiu Liu, Y. 2020. Genomewide association study reveals loci associated with seed longevity in common wheat (Triticum aestivum L.). Plant Breeding, 139(2): 295-303. [DOI:10.1111/pbr.12784]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

This work is licensed under a Creative Commons Attribution 4.0 International License.