Volume 2, Issue 1 ((Spring and Summer) 2015)                   Iranian J. Seed Res. 2015, 2(1): 73-82 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Etesami M, Rahemi Karizaki A, Torabi B. Quantifying Germination response to temperature of hibiscus tea (Hibiscus sabdariffa). Iranian J. Seed Res.. 2015; 2 (1) :73-82
URL: http://yujs.yu.ac.ir/jisr/article-1-47-en.html
GonbadKavous University , alirahemi@yahoo.com
Abstract:   (43749 Views)

Germination rate and percentage are maximal at optimum temperatures and then reach to zero at the base and ceiling temperatures. An experiment was conducted at the Gonbad Kavous University laboratory as a completely randomized design with 4 replications, to study germination response to temperature and evaluation of cardinal temperature on germination rate and percentage of hibiscus tea. Seeds germinated at 0 to 45 0C by 5 0C intervals. Results indicated that the response of germination percentage and rate adequately fitted with dent like and segmented functions, continually. Base and ceiling temperatures were 1.66 and 43.33 0C for germination percentage and 4.53 and 42.95 0C for germination rate. Optimum temperatures were 30 0C for germination rate and 11.56 and 33.63 0C for germination percentage. In conclusion, base and favorable temperatures for hibiscus tea seeds were 11 and 35 0C. Therefore it is recommended to cultivate at Gonbad kavous weather condition.

Full-Text [PDF 271 kb]   (2685 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2014/11/3 | Accepted: 2015/04/19

1. Adam, N.R., Dierig, D.A., Coffelt, T.A., and Wintermeyer, M.J. 2007. Cardinal temperatures for germination and early growth of two Lesquerella species. Industrial Crops and Products, 25(1): 24-33. [DOI:10.1016/j.indcrop.2006.06.001]
2. Andreucci, M., Black, A.D., and Moot. D.J. 2012. Cardinal temperatures and thermal time requirements for germination of forage brassicas. Agronomy New Zealand, 42: 181-191.
3.  Bradford, K.J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2): 248-260. [DOI:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2]
4.  Ellis R.H., and Roberts, E.H. 1981. The quantification of aging and survival in orthodox seeds. Seed Science and Technolnology, 9: 373-409.
5.  EshraghiNejad, M.E., Kamkar, B., and Soltani, A. 2009. Cardinal temperatures and required biological days from sowing to emergence of three millet species (common, foxtail, pearl millet). Journal of Agricultural Science and Technology, 3(12): 36-43.
6. Freeman, C.E. 1973. Germination response of Texas population of ocotillo to Constant temperature water stress pH and salinity. American midland Naturalist, 89: 252-256. [DOI:10.2307/2424160]
7.  Hardegree, S.P. 2006. Predicting Germination Response to Temperature I. Cardinal-temperature Models and Subpopulation-specific Regression. Annals of Botany, 97(6): 1115-1125. [DOI:10.1093/aob/mcl071] [PMID] [PMCID]
8. Hardegree, S.P., and Winstral, A.H. 2006. Predicting Germination Response to Temperature. II. Three-dimensional Regression, Statistical Gridding an Iterative- probit Optimization Using Measured and Interpolated-subpopulation Data. Annals of Botany, 98(2): 403-410. [DOI:10.1093/aob/mcl112] [PMID] [PMCID]
9. Jame, Y.W., and Cutforth, H.W. 2004. Simulation the effect of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124(3): 207-218. [DOI:10.1016/j.agrformet.2004.01.012]
10. Orhan, K.U.R.T. 2012. A predictive model for the effects of temperature on the germination period of flax seeds (Linumusitatissimum L.). Turkish Journal of Agriculture and Forestry, 36(6): 654-658.
11.  Mellati, F., Koocheki, A.R., and Nassiri, M. 2005. Evaluation of germination behavior and optimum planting date of Ferula gumosa. Field Crops Research, 3(1): 123-128.
12.  Ovell, S., Ellis, R.H., Roberts, E.H., and Summerfield, R.J. 1986. The influence of temperature on seed germination rate in grain legumes. Journal of Experimental Botany, 37(5):705-715. [DOI:10.1093/jxb/37.5.705]
13. Phartyal, S.S., Thapial, R.C., Nayal, J.S., Rawat, M.M.S., and Joshi, G. 2003. The influence of temperatures on seed germination rate in Himalaya elm (Ulmus wallichiana). Seed Science and Technology, 31(1): 83-93. [DOI:10.15258/sst.2003.31.1.09]
14. Rawlins, J.K., Roundy, B.A., Davis, S.M., Egget, M. 2012. Predicting germination in semi-arid wild land seedbeds. Thermal germination models. Environmental and Experimental Botany, 76: 60-67. https://doi.org/10.1016/j.envexpbot.2011.10.004 [DOI:10.1016/j.envexpbot.2011.10.003]
15.  Riemens, M.M., Scheepens, P.C., and Van der Weide, R.Y. 2004. Dormancy, germination and emergence of weed seeds, with emphasis on influence of light. Plant Research International BV Note, 302: 1-2.
16.  Seefeldt, S.S., Kidwell, K.K., and Waller, J.E. 2002. Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crops Research, 75(1): 47-52. [DOI:10.1016/S0378-4290(02)00007-2]
17. Soltani, A., Hamme, G.L., Torabi, B., Robertson, M.J., and Zeinali, E. 2006. Modeling chickpea growth and development: Phonological development. Field Crops Research, 99(1): 1-13. https://doi.org/10.1016/j.fcr.2006.02.004 https://doi.org/10.1016/j.fcr.2006.02.005 [DOI:10.1016/j.fcr.2006.02.006]
18.  Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M., and Sarparast, R. 2006. Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1): 156-167. [DOI:10.1016/j.agrformet.2006.04.004]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.