Volume 13, Issue 1 ((Autumn & Winter) 2024)                   Plant Pathol. Sci. 2024, 13(1): 125-134 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

pouraziz P, Koolivand D. (2024). The application of biopolymers in the management of plants viral diseases. Plant Pathol. Sci.. 13(1), 125-134. doi:10.61186/pps.13.1.125
URL: http://yujs.yu.ac.ir/pps/article-1-441-en.html
University of Zanjan , pourazizparastoo@yahoo.com
Abstract:   (393 Views)
Pouraziz, P., & Koolivand, D. (2024). The application of biopolymers in the management of plants viral diseases. Plant Pathology Science, 13(1),125-134.
Polymers with natural origin are known as biopolymers. Due to their biocompatibility and biodegradable properties, biopolymers have a wide range of applications in various fields such as agriculture, medicine, and industry. Biopolymers limit the activities of plant pathogens by increasing the immune system of plants by influencing resistance genes and also activating resistance mechanisms. Therefore, the use of these substances to combat plant pathogens has found a wide application in agriculture. The use of biopolymers to deal with plant pathogens such as fungi and bacteria is a suitable solution to reduce their damage. Also, treatment of the virus-infected plant with biopolymers reduces the symptoms and damage of the disease. The molecular antiviral mechanisms of some biopolymers such as chitosan, chitin, oligochitosan, β-glucans, lentine, alginate, hydrogel and their compounds in the management of plants viral diseases are described in this article.
Full-Text [PDF 514 kb]   (208 Downloads)    
Type of Study: Extentional | Subject: Virology
Received: 2024/05/16 | Accepted: 2024/09/28

References
1. Abd El-Gawad, H., & Bondok, A. (2015). Response of tomato plants to salicylic acid and chitosan under infection with tomato mosaic virus. American-Eurasian Journal of Agricultural & Environmental, 15(8), 1520-1529.
2. Akbari, A., Bigham, A., Rahimkhoei, V., Sharifi, S., & Jabbari, E. (2022). Antiviral polymers: a review. Polymers, 14(9), 1634. [DOI:10.3390/polym14091634] [PMID] []
3. Albersheim, P., Darvill, A. G., McNeil, M., Valent, B. S., Sharp, J. K., Nothnagel, E. A., Davis, K. R., Yamazaki, N., Gollin, D. J., & York, W. S. (1983). Oligosaccharins: naturally occurring carbohydrates with biological regulatory functions. Structure and Function of Plant Genomes, 293-312. [DOI:10.1007/978-1-4684-4538-1_30]
4. Alghonaim, M. I., Alsalamah, S. A., Bazaid, A. S., & Abdelghany, T. M. (2024). Biosynthesis of CuO@ Au NPs and its formulated into biopolymers carboxymethyl cellulose and chitosan: Characterizations, antimicrobial, anticancer and antioxidant properties. Waste and Biomass Valorization,15, 1-14. [DOI:10.1007/s12649-024-02469-5]
5. Chirkov, S. (2002). The antiviral activity of chitosan. Applied Biochemistry and Microbiology, 38, 1-8. [DOI:10.1023/A:1013206517442]
6. Chirkov, S., Il'ina, A., Surgucheva, N., Letunova, E., Varitsev, Y. A., Tatarinova, N. Y., & Varlamov, V. (2001). Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russian Journal of Plant Physiology, 48, 774-779. [DOI:10.1023/A:1012508625017]
7. De Marco Castro, E., Calder, P. C., & Roche, H. M. (2021). β‐1, 3/1, 6‐glucans and Immunity: State of the Art and Future Directions. Molecular Nutrition & ood research, 65(1), 1901071. [DOI:10.1002/mnfr.201901071] [PMID] []
8. Ding, L.-N., Li, Y.-T., Wu, Y.-Z., Li, T., Geng, R., Cao, J., Zhang, W., & Tan, X.-L. (2022). Plant disease resistance-related signaling pathways: recent progress and future prospects. International Journal of Molecular Sciences, 23(24), 16200. [DOI:10.3390/ijms232416200] [PMID] []
9. El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968-987. [DOI:10.3390/md8040968] [PMID] []
10. Elshafie, H. S., & Camele, I. (2021). Applications of absorbent polymers for sustainable plant protection and crop yield. Sustainability, 13(6), 3253. [DOI:10.3390/su13063253]
11. Feng, B., Chen, Y., Zhao, C., Zhao, X., Bai, X., & Du, Y. (2006). Isolation of a novel Ser/Thr protein kinase gene from oligochitosan-induced tobacco and its role in resistance against tobacco mosaic virus. Plant Physiology and Biochemistry, 44(10), 596-603. [DOI:10.1016/j.plaphy.2006.10.003] [PMID]
12. Fesel, P. H., & Zuccaro, A. (2016). β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genetics and Biology, 90, 53-60. [DOI:10.1016/j.fgb.2015.12.004] [PMID]
13. Firmansyah, D., & Hidayat, S. H. (2017). Use of chitosan and plant growth promoting rhizobacteria to control squash mosaic virus on cucumber plants. 11, 148-155 [DOI:10.3923/ajppaj.2017.148.155]
14. Goh, C. H., Heng, P. W. S., & Chan, L. W. (2012). Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers, 88(1), 1-12. [DOI:10.1016/j.carbpol.2011.11.012]
15. Han, B., Baruah, K., Cox, E., Vanrompay, D., & Bossier, P. (2020). Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: a mini-review. Frontiers in Immunology, 11, 658. [DOI:10.3389/fimmu.2020.00658] [PMID] []
16. Huang, M., Wu, Z., Li, J., Ding, Y., Chen, S., & Li, X. (2023). Plant protection against viruses: An integrated review of plant immunity agents. International Journal of Molecular Sciences, 24(5), 4453. [DOI:10.3390/ijms24054453] [PMID] []
17. Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20, 1-9. [DOI:10.1007/s40502-015-0139-6]
18. Malerba, M., & Cerana, R. (2019). Recent applications of chitin-and chitosan-based polymers in plants. Polymers, 11(5), 839. [DOI:10.3390/polym11050839] [PMID] []
19. Mishra, S., Jagadeesh, K. S., Krishnaraj, P. U., & Prem, S. (2014). Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Australian Journal of Crop Science, 8(3), 347-355.
20. Nagorskaya, V., Reunov, A., Lapshina, L., Davydova, V., & Yermak, I. (2014). Effect of chitosan on tobacco mosaic virus (TMV) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of N. tabacum L. cv. Samsun. Virologica Sinica, 29, 250-256. [DOI:10.1007/s12250-014-3452-8] [PMID] []
21. Ochoa-Meza, L. C., Quintana-Obregón, E. A., Vargas-Arispuro, I., Falcón-Rodríguez, A. B., Aispuro-Hernández, E., Virgen-Ortiz, J. J., & Martínez-Téllez, M. Á. (2021). Oligosaccharins as elicitors of defense responses in wheat. Polymers, 13(18), 3105. [DOI:10.3390/polym13183105] [PMID] []
22. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52, 347-375. [DOI:10.1146/annurev-phyto-082712-102340] [PMID]
23. Pospieszny, H., Chirkov, S., & Atabekov, J. (1991). Induction of antiviral resistance in plants by chitosan. Plant Science, 79(1), 63-68. [DOI:10.1016/0168-9452(91)90070-O]
24. Rajeswari, S., Prasanthi, T., Sudha, N., Swain, R. P., Panda, S., & Goka, V. (2017). Natural polymers: A recent review. World J. Pharm. Pharm. Sci, 6, 472-494. [DOI:10.20959/wjpps20178-9762]
25. Rendina, N., Nuzzaci, M., Scopa, A., Cuypers, A., & Sofo, A. (2019). Chitosan-elicited defense responses in cucumber mosaic virus (CMV)-infected tomato plants. Journal of plant physiology, 234, 9-17. [DOI:10.1016/j.jplph.2019.01.003] [PMID]
26. Riseh, R. S., Vazvani, M. G., & Kennedy, J. F. (2023). β-glucan-induced disease resistance in plants: A review. International Journal of Biological Macromolecules, 127043. [DOI:10.1016/j.ijbiomac.2023.127043] [PMID]
27. Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: properties and its application in agriculture in context of molecular weight. Polymers, 15(13), 2867. [DOI:10.3390/polym15132867] [PMID] []
28. Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., & Pérez-Vicente, R. (2019). Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science, 10, 287. [DOI:10.3389/fpls.2019.00287] [PMID] []
29. Saberi Riseh, R., Gholizadeh Vazvani, M., Ebrahimi-Zarandi, M., & Skorik, Y. A. (2022). Alginate-induced disease resistance in plants. Polymers, 14(4), 661. [DOI:10.3390/polym14040661] [PMID] []
30. Wang, J., Wang, H.Y., Xia, X.M., Li, P.P., & Wang, K.Y. (2013). Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings. International Journal of Biological Macromolecules, 61, 264-269. [DOI:10.1016/j.ijbiomac.2013.07.005] [PMID]
31. Xiang, S., Wang, J., Wang, X., Ma, X., Peng, H., Zhu, X., Huang, J., Ran, M., Ma, L., & Sun, X. (2023). A chitosan‐coated lentinan‐loaded calcium alginate hydrogel induces broad‐spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin‐like (CML) protein 3. Plant, Cell & Environment, 46(11), 3592-3610. [DOI:10.1111/pce.14681] [PMID]
32. Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35, 569-588. [DOI:10.1007/s13593-014-0252-3]
33. Zhao, L., Hao, X., & Wu, Y. (2015). Inhibitory effect of polysaccharide peptide (PSP) against tobacco mosaic virus (TMV). International Journal of BiologicalMmacromolecules, 75, 474-478. [DOI:10.1016/j.ijbiomac.2015.01.058] [PMID]
34. Zvereva, A. S., Klingenbrunner, M., & Teige, M. (2023). Calcium signaling: an emerging player in plant antiviral defense. Journal of Experimental Botany, erad442. [DOI:10.1093/jxb/erad442] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb