Volume 13, Issue 1 ((Autumn & Winter) 2024)                   Plant Pathol. Sci. 2024, 13(1): 55-64 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rastgou M, Honarvar S. (2024). Application of phages for biological control of plants pathogenic bacteria. Plant Pathol. Sci.. 13(1), 55-64. doi:10.61186/pps.13.1.55
URL: http://yujs.yu.ac.ir/pps/article-1-423-en.html
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran , m.rastgou@urmia.ac.ir
Abstract:   (618 Views)
Rastgou, M., & Honarvar, S. (2024). Application of phages for biological control of plants pathogenic bacteria. Plant Pathology Science, 13(1),55-64.

Pathogenic bacteria are one of the most important factors in reducing the yield of plant products. In the past, the management of these pathogens was limited to the use of antibacterial compounds or resistance inducers, but with the discovery of bacteriophages in recent decades, attention to their use has increased. Bacteriophages or phages are viruses that specifically affect bacterial cells. Currently, hundreds of bacteriophages have been isolated and tested against plant pathogenic bacteria, and there are still many more that need to be investigated. This approach requires special protocols to identify new phages, understand the emergence of phage-resistant clones and the infectivity of other bacterial species. Phage therapy or the use of phages to biological control plant pathogenic bacteria due to its cheapness, very high specificity of phages against bacteria, no negative effect on humans or animals, and no environmental pollution, as a suitable method to control these pathogens can be considered.
 
Full-Text [PDF 1270 kb]   (323 Downloads)    
Type of Study: Extentional | Subject: Plants Diseases Management Methods
Received: 2023/12/22 | Accepted: 2024/03/10

References
1. Balogh, B., Jones, J.B., Iriarte, F.B., & Momol M.T. (2010). Phage therapy for plant disease control. Current Pharmaceutical Biotechnology 11: 48-57. [DOI:10.2174/138920110790725302] [PMID]
2. Braga, L.P.P., Spor, A., Kot, W., Breuil, M.C., Hansen, L.H., Setubal, J.C., & Philippot, L. (2020). Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome, 8:52. doi: 10.1186/ s40168-020-00822-z [DOI:10.1186/s40168-020-00822-z] [PMID] []
3. Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O'Mahony, J., & Coffey, A. (2017). Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 8: 34. [DOI:10.3389/fmicb.2017.00034]
4. Dion, M. B., Oechslin, F., & Moineau, S. (2020). Phage diversity, genomics and phylogeny. Reviews Microbiology Nature18:125-138.doi:10.1038/s41579-019-0311-5. [DOI:10.1038/s41579-019-0311-5] [PMID]
5. Eski, D. B., Eski, A., & Darcan, C. (2022). The future of phage-mediated biocontrol of tomato bacterial diseases. Journal of Agricultural Biotechnology (JOINABT), 3(1):11-24.
6. Giri, N. (2021(. Bacteriophage structure, classification, assembly and phage therapy. Biosciences Biotechnology Research Asia, 18(2): 239-250. [DOI:10.13005/bbra/2911]
7. Hernandez, C.A., & Koskella, B. 2019. Phage resistance evolution in vitro is not reflective of in vivo outcome in a plantbacteria- phage system. Evolution 73: 2461-2475. [DOI:10.1111/evo.13833] [PMID]
8. Ibrahim, Y.E., Saleh, A.A., & Al-Saleh, M.A. (2017). Management of Asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Disease 101: 761-765. [DOI:10.1094/PDIS-08-16-1213-RE] [PMID]
9. Kassa, T. (2021). Bacteriophages against pathogenic bacteria and possibilities for future application in Africa. Infection and Drug Resistance,14:17-31. [DOI:10.2147/IDR.S284331] [PMID] []
10. Kimmelshue, C., Goggi A.S., & Cademartiri, R. (2019). The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. Nebraskensis in maize seeds. Scientific Reports 9: 17950. doi: 10.1038/s41598-019-54068-3 [DOI:10.1038/s41598-019-54068-3] [PMID] []
11. Korniienko, N., Kharina, A., Budzanivska, I., Burketova, L., & Kalachova, T. (2022). Phages of phytopathogenic bacteria: High potential, but challenging application. Plant Protection Science 58: 81-91. [DOI:10.17221/147/2021-PPS]
12. Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. (2010). Phage therapy in clinical practice: Treatment of human infections. Current Pharmaceutical Biotechnology, 11: 69-86. [DOI:10.2174/138920110790725401] [PMID]
13. Lang, J.M., Gent, D.H., & Schwartz, H.F. 2007. Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Disease 91: 871-878. [DOI:10.1094/PDIS-91-7-0871] [PMID]
14. Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., et al. (2018). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Research. 46, D708-D717.doi: 10.1093/nar/gkx932 [DOI:10.1093/nar/gkx932] [PMID] []
15. Morella, N.M., Gomez, A.L., Wang, G., Leung, M.S., Koskella, B. 2018. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Molecular Ecology 27: 2025-2038. [DOI:10.1111/mec.14542] [PMID]
16. Nakayinga, R., Makumi, A., Tumuhaise, V., & Tinzaara, W. (2021). Xanthomonas bacteriophages: a review of their biology and biocontrol applications in agriculture. BMC Microbiology 21:291. https://doi.org/10.1186/s12866-021-02351-7 [DOI:10.1186/s12866-021-02351-7.] [PMID] []
17. Obradovic, A., Jones, J.B., Momol, M.T., Olson, S.M., Jackson, L.E., Balogh, B., Guven, K., & Iriarte, F.B. (2005). Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease 89: 712-716. [DOI:10.1094/PD-89-0712] [PMID]
18. Papaianni, M., Paris, D., Woo, S.L., Fulgione, A., Rigano, M.M., Parrilli, E., Tutino, M.L., Marra, R., Manganiello, G., Casillo, A., Limone, A., Zoina, A., Motta, A., Lorito, M., & Capparelli, R. (2020). Plant dynamic metabolic response to bacteriophage treatment after Xanthomonas campestris pv. campestris infection. Frontiers in Microbiology 11: 732.doi: 10.3389/fmicb.2020.00732 [DOI:10.3389/fmicb.2020.00732] [PMID] []
19. Petrzik, K., Vacek, J., Kmoch, M., Binderová, D., Brázdová, S., Lenz, O., & Ševˇcík, R. (2023). Field Use of Protective Bacteriophages against Pectinolytic Bacteria of Potato. Microorganisms 11: 620. https://doi.org/10.3390/microorganisms11030620 [DOI:10.3390/microorganisms11030620.] [PMID] []
20. Pratama, A.A., Terpstra, J., de Oliveria, A.L.M., Salles, J.F. (2020). The role of rhizosphere bacteriophages in plant health. Trends in Microbiology 28: 709-718. [DOI:10.1016/j.tim.2020.04.005] [PMID]
21. Ramírez, M., Neuman, B.W., & Ramírez, C.A. (2020). Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control 149: 104238. doi: 10.1016/j.biocontrol. 2020.104238 [DOI:10.1016/j.biocontrol.2020.104238]
22. Starr, E.P., Nuccio, E.E., Pett-Ridge, J., Banfield, J.F., & Firestone, M.K. (2019). Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences of the United States of America 116: 25900-25908. [DOI:10.1073/pnas.1908291116] [PMID] []
23. Umrao, P.D., Kumar, V., & Kaistha, S.D. (2021). Biocontrol potential of bacteriophage ɸsp1 against bacterial wilt-causing Ralstonia solanacearum in solanaceae crops. Egyptian Journal of Biological Pest Control, 31:1-12. [DOI:10.1186/s41938-021-00408-3]
24. Vu, N.T., & Oh, C.S. (2020). Bacteriophage usage for bacterial disease management and diagnosis in plants. The Plant Pathology Journal 36: 204-217. [DOI:10.5423/PPJ.RW.04.2020.0074] [PMID] []
25. White, E. H., & Orlova. E. V. (2020). Bacteriophages: Their Structural Organisation and Function, Bacteriophages: Perspectives and Future. IntechOpen, doi:10.5772/intechopen.85484. [DOI:10.5772/intechopen.85484]
26. Zhu, H., Guo, S., Zhao, J., Arbab Sakandar, H., Lv, R., Wen, Q., & Chen, X. (2022). Whole genome sequence analysis of Lactiplantibacillus plantarum bacteriophage P2. Polish Journal of Microbiology 71(3):421-428. doi:10.33073/pjm-2022-037. PMID: 36185020; PMCID: PMC9608156. [DOI:10.33073/pjm-2022-037] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb