Volume 12, Issue 2 ((Spring and Summer) 2023)                   Plant Pathol. Sci. 2023, 12(2): 130-142 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghanpour Farashah S. (2023). Defense responses by nitric oxide in plant-pathogen interaction. Plant Pathol. Sci.. 12(2), 130-142.
URL: http://yujs.yu.ac.ir/pps/article-1-403-en.html
Department of Agriculture, Payame Noor University, Tehran, Iran , sdfarashah@pnu.ac.ir
Abstract:   (356 Views)
Dehghanpour Farashah S (2023) Defense responses by nitric oxide in plant-pathogen interaction. Plant Pathology Science 12(2):130-142.
The control of diseases in agriculture often relies on pesticides and chemical fertilizers, which negatively affect the rhizosphere natural microflora and ecosystem balance. Today, researchers are looking to replace these chemicals with other environment friendly agents to improve agricultural production and control plant pathogens. Research on the interaction of nitric oxide (NO) with plant pathogens has shown that NO is a key messenger in the response of plants to biotic and abiotic stresses. Due to the role of NO in the regulation of plant defense genes, especially through programmed cell death, it has attracted the attention of many plant pathologists. Although NO plays an important role in the hypersensitive reaction in response to various biotic and abiotic stresses, it has been found that NO also plays a role in regulating the expression of genes related to non-specific resistance. In this review, the role of nitric oxide in plant-pathogens interaction has been investigated.
Full-Text [PDF 547 kb]   (152 Downloads)    
Type of Study: Extentional | Subject: Special
Received: 2023/03/12 | Accepted: 2023/07/26

References
1. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237-1249. [DOI:10.1007/s00425-010-1130-0]
2. Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2016) Nitric oxide in the offensive strategy of fungal and oomycete plant pathogens. Frontiers in Plant Science 7: 252. [DOI:10.3389/fpls.2016.00252]
3. Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam, MS (2022) Salt stress proteins in plants: An overview. Frontiers in Plant Science 13: 999058. [DOI:10.3389/fpls.2022.999058]
4. Baidya S, Cary JW, Grayburn WS, Calvo A (2011) Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production. Applied and Environmental Microbiology 77(15): 5524-5528. [DOI:10.1128/AEM.00638-11]
5. Calabrese EJ, Agathokleous E (2023). Nitric oxide, hormesis and plant biology. Science of the Total Environment 866: 161299. [DOI:10.1016/j.scitotenv.2022.161299]
6. Cao N, Zhan B, Zhou X (2019) Nitric oxide as a downstream signaling molecule in brassinosteroid-mediated virus susceptibility to maize chlorotic mottle virus in maize. Viruses 11(4): 368. [DOI:10.3390/v11040368]
7. Cohen MF, Lamattina L, Yamasaki H (2010) Nitric oxide signaling by plant-associated bacteria. Nitric oxide in plant physiology. Wiley-VCH, Weinheim. 161-172. [DOI:10.1002/9783527629138.ch11]
8. Dehghanpour Farashah S, Salehzadeh M (2021) Situation of Fusarium root and crown rot disease of wheat in Iran. Plant Pathology Science 10(1):97-106. (In Persian with English abstract) [DOI:10.52547/pps.10.1.97]
9. Dehghanpour-Farashah S, Taheri P, Falahati-Rastegar M (2019a) Virulence factors of Fusarium spp., causing wheat crown and root rot in Iran. Phytopathologia Mediterranea 58(1): 115-126.
10. Dehghanpour-Farashah S, Taheri P, Falahati-Rastegar M (2019b) Effect of polyamines and nitric oxide in Piriformospora indica-induced resistance and basal immunity of wheat against Fusarium pseudograminearum. Biological Control 136: 104006. [DOI:10.1016/j.biocontrol.2019.104006]
11. Dehghanpour-Farashah S, Taheri P, Falahati-Rastegar M (2020) Identification and pathogenicity of Fusarium spp., the causal agent of wheat crown and root rot in Iran. Journal of Plant Pathology 102: 143-154. [DOI:10.1007/s42161-019-00400-9]
12. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693): 585-588. [DOI:10.1038/29087]
13. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences 95(17): 10328-10333. [DOI:10.1073/pnas.95.17.10328]
14. Ganjewala D, Boba S, Raghavendra AS (2008) Sodium nitroprusside affects the level of anthocyanin and flavonol glycosides in pea (Pisum sativum L. cv. Arkel) leaves. Acta Biologica Szegediensis 52(2): 301-305.
15. Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiology and Biochemistry 63: 254-261. [DOI:10.1016/j.plaphy.2012.12.001]
16. Gupta KJ, Zabalza A, Van Dongen JT (2009) Regulation of respiration when the oxygen availability changes. Physiologia Plantarum 137(4): 383-391. [DOI:10.1111/j.1399-3054.2009.01253.x]
17. Hayat S, Mori M, Pichtel J, Ahmad A (2009) Nitric oxide in plant physiology. Wiley-Blackwell, India, 210p. [DOI:10.1002/9783527629138]
18. Hu M, Zhu Y, Liu G, Gao Z, Li M, Su Z, Zhang Z (2019) Inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit. Scientia Horticulturae 245: 224-230. [DOI:10.1016/j.scienta.2018.10.030]
19. Keshavarz-Tohid V, Taheri P, Taghavi SM, Tarighi S (2016) The role of nitric oxide in basal and induced resistance in relation with hydrogen peroxide and antioxidant enzymes. Journal of Plant Physiology 199: 29-38. [DOI:10.1016/j.jplph.2016.05.005]
20. Khan M, Al Azawi TN, Pande A, Mun BG, Lee DS, Hussain A, Lee BH, Yun BW (2021) The role of nitric oxide-induced ATILL6 in growth and disease resistance in Arabidopsis thaliana. Frontiers in Plant Science 12: 685156. [DOI:10.3389/fpls.2021.685156]
21. Khan M, Ali S, Al Azzawi TNI, Yun BW (2023). Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. International Journal of Molecular Sciences 24(5): 4782. [DOI:10.3390/ijms24054782]
22. Kim NH, Kim BS, Hwang BK (2013) Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response. Plant Physiology 162(4): 2067-2083. [DOI:10.1104/pp.113.217372]
23. Lai T, Chen Y, Li B, Qin G, Tian S (2014) Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis. Journal of Proteomics 103: 47-56. [DOI:10.1016/j.jprot.2014.03.012]
24. Lazalt AM, Beligni MV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. European Journal of Plant Pathology 103: 643-651. [DOI:10.1023/A:1008604410875]
25. Leonetti P, Melillo MT, Bleve-Zacheo T (2011) Nitric oxide and hydrogen peroxide: two players in the defence response of tomato plants to root-knot nematodes. Communications in Agricultural and Applied Biological Sciences 76(3): 371-381.
26. Li X, Gong B, Xu K (2014) Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe. Scientia Horticulturae 170: 237-248. [DOI:10.1016/j.scienta.2014.03.026]
27. Liao W, Igamberdiev AU, Palma JM (2023). Advances in Nitric Oxide Signalling and Metabolism in Plants. International Journal of Molecular Sciences 24(7): 6397. [DOI:10.3390/ijms24076397]
28. Liao YW, Sun ZH, Zhou YH, Shi K, Li X, Zhang GQ, Xia XJ, Chen ZX, Yu JQ (2013) The role of hydrogen peroxide and nitric oxide in the induction of plant-encoded RNA-dependent RNA polymerase 1 in the basal defense against Tobacco mosaic virus. PLoS One 8(9): e76090. [DOI:10.1371/journal.pone.0076090]
29. Lu R, Liu Z, Shao Y, Su J, Li X, Sun F, Zhang Y, Li S, Zhang Y, Cui J, Zhou Y (2020) Nitric oxide enhances rice resistance to rice black-streaked dwarf virus infection. Rice 13(1): 1-3. [DOI:10.1186/s12284-020-00382-8]
30. Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiology 148(2): 818-828. [DOI:10.1104/pp.108.125104]
31. Meng Y, Jing H, Huang J, Shen R, Zhu X (2022) The role of nitric oxide signaling in plant responses to cadmium stress. International Journal of Molecular Sciences 23(13): 6901. [DOI:10.3390/ijms23136901]
32. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7(9): 405-410. [DOI:10.1016/S1360-1385(02)02312-9]
33. Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5. [DOI:10.1093/aobpla/pls052]
34. Noorbakhsh Z, Taheri P (2016) Nitric oxide: a signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani. European Journal of Plant Pathology 144: 551-568. [DOI:10.1007/s10658-015-0794-5]
35. Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant and Cell Physiology 37(1): 113-116. [DOI:10.1093/oxfordjournals.pcp.a028908]
36. París R, Lamattina L, Casalongué CA (2007) Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiology and Biochemistry 45(1):80-86. [DOI:10.1016/j.plaphy.2006.12.001]
37. Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 23(7): 846-860. [DOI:10.1094/MPMI-23-7-0846]
38. Qiao W, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology 50(10):1238-1246. [DOI:10.1111/j.1744-7909.2008.00759.x]
39. Sarkar TS, Biswas P, Ghosh SK, Ghosh S (2014) Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions. PLoS One 9(9): e107348. [DOI:10.1371/journal.pone.0107348]
40. Sarkar TS, Majumdar U, Roy A, Maiti D, Goswamy AM, Bhattacharjee A, Ghosh S, Ghosh SK (2010) Production of nitric oxide in host-virus interaction: A case study with a compatible begomovirus-kenaf host-pathosystem. Plant Signaling and Behavior 5(6): 668-676. [DOI:10.4161/psb.5.6.11282]
41. Schlicht M, Kombrink E (2013) The role of nitric oxide in the interaction of Arabidopsis thaliana with the biotrophic fungi, Golovinomyces orontii and Erysiphe pisi. Frontiers in Plant Science 4: 351. [DOI:10.3389/fpls.2013.00351]
42. Sheokand S, Bhankar V, Sawhney V (2010) Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Brazilian Journal of Plant Physiology 22: 81-90. [DOI:10.1590/S1677-04202010000200002]
43. Shi HT, Li RJ, Cai W, Liu W, Fu ZW, Lu YT (2012) In vivo role of nitric oxide in plant response to abiotic and biotic stress. Plant Signaling and Behavior 7(3): 437-439. [DOI:10.4161/psb.19219]
44. Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212: 835-841. [DOI:10.1007/s004250000447]
45. Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X (2021) Molecular functions of nitric oxide and its potential applications in horticultural crops. Horticulture Research 8: 71. [DOI:10.1038/s41438-021-00500-7]
46. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. The Plant Journal 60(5): 795-804. [DOI:10.1111/j.1365-313X.2009.04000.x]
47. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology 91: 1477-1492. [DOI:10.1007/s00253-011-3473-2]
48. Verma K, Mehta SK, Shekhawat GS (2013) Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26: 255-269. [DOI:10.1007/s10534-013-9608-4]
49. Wang JW, Wu JY (2005) Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant and Cell Physiology 46(6): 923-930. [DOI:10.1093/pcp/pci098]
50. Wang Q, Liang X, Dong Y, Xu L, Zhang X, Kong J, Liu S (2013) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. Journal of Plant Growth Regulation 32: 721-731. [DOI:10.1007/s00344-013-9339-3]
51. Wu X, Zhu W, Zhang H, Ding H, Zhang HJ (2011) Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiologiae Plantarum 33: 1199-1209. [DOI:10.1007/s11738-010-0648-x]
52. Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photo inhibition in vivo. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355(1402): 1477-1488. [DOI:10.1098/rstb.2000.0708]
53. Yang H, Zhao X, Wu J, Hu M, Xia S (2011) The benefits of exogenous NO: enhancing Arabidopsis to resist Botrytis cinerea. American Journal of Plant Sciences 2(03): 511. [DOI:10.4236/ajps.2011.23060]
54. Yu Z, Cao J, Zhu S, Zhang L, Peng Y, Shi J (2020) Exogenous nitric oxide enhances disease resistance by nitrosylation and inhibition of S-nitrosoglutathione reductase in peach fruit. Frontiers in Plant Science 11: 543. [DOI:10.3389/fpls.2020.00543]
55. Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proceedings of the National Academy of Sciences 101(44): 15811-15816. [DOI:10.1073/pnas.0404536101]
56. Zheng Y, Sheng J, Zhao R, Zhang J, Lv S, Liu L, Shen L (2011) Preharvest L-arginine treatment induced postharvest disease resistance to Botrysis cinerea in tomato fruits. Journal of Agricultural and Food Chemistry 59(12): 6543-6549. [DOI:10.1021/jf2000053]
57. Zhou J, Jia F, Shao S, Zhang H, Li G, Xia X, Zhou Y, Yu J, Shi K (2015) Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. Frontiers in Plant Science 6: 193. [DOI:10.3389/fpls.2015.00193]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb