Volume 12, Issue 1 ((Autumn & Winter) 2023)                   Plant Pathol. Sci. 2023, 12(1): 94-104 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hasanpour N, arzanlou M. (2023). Application of yeasts in plant diseases management. Plant Pathol. Sci.. 12(1), 94-104. doi:10.52547/pps.12.1.94
URL: http://yujs.yu.ac.ir/pps/article-1-359-en.html
Department of Plant Protection, Faculty of Agriculture, Tabriz University, Tabriz, Iran , arzanlou@hotmail.com
Abstract:   (887 Views)
Hasanpour, N., & Arzanlou M. (2023). Application of yeasts in plant diseases management. Plant Pathology Science 12(1), 94-104.      
Yeasts are widely distributed on earth.They play role in industries such as bakery, fermentation, protein production, the synthesis of chemicals such as riboflavin and citric acid, agriculture and plant diseases management. They are effective in reducing plant diseases. through a variety of mechanisms, such as competition for food and space, parasitic relationship with the pathogen, induction of plant resistance, mycoparasitism, ecological niche occupation, mycotoxin detoxification and production of cell wall degradation enzymes. The superior characteristics of yeasts are greater tolerance and adaptation to thermal fluctuations at low and high temperatures, adaptation in a wide range of relative humidity, pH fluctuations, low oxygen levels, high proliferation rate, limiting the pathogen population and tolerance to UV radiation. Due these characteristics, yeasts are considered as one of the best choices to use in the process of biological control. In this paper, the positive aspects of yeasts compared to other microbial agents, their role in agriculture and management mechanisms of plant diseases are discussed.
Full-Text [PDF 414 kb]   (405 Downloads)    
Type of Study: Extentional | Subject: Special
Received: 2022/02/11 | Accepted: 2022/06/15

1. Agrios, G.N. (2005). Plant Pathology. Elsevier Academic Press, Burlington, MA,USA, 344P.
2. Alavi Fard, F., Etebarian, H., & Sahebani, N. (2012). Biological control of gray mold of apple by Candida membranifaciens, Rhodotorula mucilaginosa and Pichia guilliermondii. Iranian Journal of Plant Protection Science, 48, 17-26.
3. Al-Falih, A.M. (2006) Nitrogen transformation in vitro by some soil yeasts. Saudi Journal of Biological Sciences, 13, 135-140
4. Arrarte, E., Garmendia, G., Rossini, C., Wisniewski, M., & Vero, S. (2017). Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biological Control, 109, 14-20. [DOI:10.1016/j.biocontrol.2017.03.002]
5. Banani, H., Spadaro, D., Zhang, D., Matic, S., Garibaldi, A., & Gullino, M.L (2014). Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. International Journal of Food Microbiology, 183,1-8. [DOI:10.1016/j.ijfoodmicro.2014.05.001] [PMID]
6. Beiki, F. (2020). Biological control of kiwi gray mold patients using native yeasts isolated from Iran. Biocontrol in Plant Protection, 7(2), 31-48.
7. Beiki, F., Mohamadi Goltapeh, E., Rahimian, H., Shamsbakhsh, M., Barzegar, A., Busquets, B., & Lalucat, J. (2013). Biological control of citrus blast disease using some yeast strains isolated from citrus orchards in the Northern provinces of Iran. Biocontrol in Plant Protection, 1, 51-64.
8. Böswald, C., Engelhardt, G., Vogel, H., & Wallnöfer, P.R. (1995). Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. Journal of Natural Toxins, 3(3), 138-144. [DOI:10.1002/nt.2620030304] [PMID]
9. Botha, A. (2006). Yeasts in soil. Biodiversity and ecophysiology of yeasts, 221-240. [DOI:10.1007/3-540-30985-3_11]
10. Calderon, C.E., Rotem, N., Harris, R., Vela-Corcia, D., & Levy, M. (2019). Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea. Molecular Plant Pathology, 20, 562- 574. [DOI:10.1111/mpp.12775] [PMID] [PMCID]
11. Cook, D.W.M., Long, P.G., & Ganesh, S. (1999). The combined effect of delayed application of yeast biocontrol agents and fruit curing for the inhibition of the postharvest pathogen Botrytis cinerea in kiwifruit. Postharvest Biology and Technology, 16, 233-243. [DOI:10.1016/S0925-5214(99)00003-4]
12. De Tenório, D.A., Medeiros, E., Lima, C. S., & da Silva, J.M. (2019). Biological control of Rhizoctonia solani in cowpea plants using yeast. Tropical Plant Pathology 44, 113-119. [DOI:10.1007/s40858-019-00275-2]
13. Di Francesco, A., Ugolinim L., Lazzeri, L., & Mari, M. (2014). Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81, 8-14. [DOI:10.1016/j.biocontrol.2014.10.004]
14. Eman, A.b.d., El-Monem, A.A., Saleh, M.M.S., & Mostaza,E.A.M (2008). Minimizing the quantity of mineral nitrogen fertilizers on grapevine by using humic acid, organic and biofertilizers. Research Journal of Agriculture and Biological Sciences, 4, 46-50.
15. Fiori, S. (2012). Identification of differentially expressed genes associated with changes in the morphology of Pichia fermentans on apple and peach fruit. FEMS Yeast Research, 12, 785-795. [DOI:10.1111/j.1567-1364.2012.00829.x] [PMID]
16. Gore-Lloyd, D. (2019). Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Molecular of Microbiology, 112, 317-332. [DOI:10.1111/mmi.14272] [PMID] [PMCID]
17. Grevesse, C., Lepoivre, P., & Jijakli, M.H. (2003). Characterization of the exoglucanase-encoding gene PaEXG2 and study of its role in the biocontrol activity of Pichia anomala strain K. Phytopathology, 93, 1145-1152. [DOI:10.1094/PHYTO.2003.93.9.1145] [PMID]
18. Helbig, J. (2002). Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. Biological Control, 47, 85-99.
19. Huang, R., Li, G.Q., Zhang, J., Yang, L., Che, H.J., Jiang, D.H., & Huang, HC. (2011). Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101, 859-69. [DOI:10.1094/PHYTO-09-10-0255] [PMID]
20. Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19, 715-723. [DOI:10.1016/S0261-2194(00)00095-8]
21. Junker, K., Chailyan, A., Hesselbart, A., Forster, J., & Wendland, J. (2019). Multi-omics characterization of the necrotrophic mycoparasite Saccharomycopsis schoenii. PLoS Pathogens, 15, e1007692. [DOI:10.1371/journal.ppat.1007692] [PMID] [PMCID]
22. Khodaparast, S.A. (2015). The Kingdom of Fungi. University of Guilan Publications, 811p. (In Persian)
23. Liu, X., Fang, W., Liu, L., Yu, T., Lou, B., & Zheng, X. (2010). Biological control of postharvest sour rot of citrus by two antagonistic yeasts. Letters in Applied Microbiology, 51, 30-35. [DOI:10.1111/j.1472-765X.2010.02851.x] [PMID]
24. Long, C., Deng, B., & Deng, X. (2007). Commercial testing of Kloeckera apiculata, isolate 34-9, for biological control of postharvest diseases of citrus fruit. Annals of Microbiology, 57, 203-207. [DOI:10.1007/BF03175208]
25. Lopes, M.R., Klein, M.N., Ferraz, L.P., da Silva, A.C., & Kupper, K.C. (2015). Saccharomyces cerevisiae: a novel and efficient biological control
26. agent for Colletotrichum acutatum during pre-harvest. Microbiological Research 175, 93-99.
27. Masoud, W., Poll, L., & Jakobsen, M. (2005). Influence of volatile compounds produced by yeasts predominant during processing of Coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Yeast 22, 1133-1142. [DOI:10.1002/yea.1304] [PMID]
28. Moss, M.O., & Long, M.T. (2002). Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Additives & Contaminants 19, 387-399. [DOI:10.1080/02652030110091163] [PMID]
29. Nguyen, M.T., & Ranamukhaarachchi, S.L. (2010). Soil borne antagonists for bioogcal control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 92(2), 395-405.
30. Pizzolitto, R. P., Bueno, D. J., Armando, M. R., Cavaglieri, L. R., Dalcero, A. M., & Salvano, M. A. (2011). Binding of aflatoxin B1 to lactic acid bacteria and Saccharomyces cerevisiae in vitro: a useful model to determine the most efficient microorganism. InTech-Open Access Publisher.
31. Raacke, I., Von Rad, U., Mueller, M., & Berger, S. )2006(. Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as independent mechanisms. Molecular Plant-Microbe Interactions, 19, 1138-1146. [DOI:10.1094/MPMI-19-1138] [PMID]
32. Sharma, R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control 50, 205-221. [DOI:10.1016/j.biocontrol.2009.05.001]
33. Sommer, B., Overy, D.P., Haltli, B., & Kerr, R.G. (2016). Secreted lipases from Malassezia globosa: recombinant expression and determination of their substrate specificities. Microbiology, 162,1069-1079. [DOI:10.1099/mic.0.000299] [PMID]
34. Thambugala, K., Anupama Daranagama, D., Lander Phillips, A. G., & Kannangara, S. (2020). Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Frontiers in Cellular and Infection Microbiology, 10, 604-923. [DOI:10.3389/fcimb.2020.604923] [PMID] [PMCID]
35. Yao, H.J., & Tian, S.P. (2005). Effect of biocontrol agent methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Applied Microbiology, 98, 941-950. [DOI:10.1111/j.1365-2672.2004.02531.x] [PMID]
36. Youssef, M. M. A., & Soliman, M. M. (1997, December). Effect of integrated management on Meloidogyne incognita infecting Egyptian henbane, Hyoscyamus muticus and on subsequent cowpea plant. In 1st Scientific Conference of Agricultural Sciences, Faculty of Agriculture, Assiut University, Egypt (pp. 585-594).
37. Zou, Z., Sun, J., Huang, F., Feng, Z., Li, M., Shi, R., Ding, J., & Li, H. (2015). In vitro removal of T-2 toxin by yeasts. Journal of Food Safety, 35, 544-550. [DOI:10.1111/jfs.12204]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb