Volume 11, Issue 1 ((Autumn & Winter) 2022)                   Plant Pathol. Sci. 2022, 11(1): 133-145 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taheri H, Bazgir E. (2022). 12- The role of autophagy in plants protection against pathogens. Plant Pathol. Sci.. 11(1), 133-145. doi:10.52547/pps.11.1.133
URL: http://yujs.yu.ac.ir/pps/article-1-340-en.html
Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran , Bazgir.ei@lu.ac.ir
Abstract:   (2716 Views)
Taheri H, Bazgir E (2022) The role of autophagy in plants protection against pathogens. Plant Pathology Science 11(1):133-145.                 Doi: 10.2982/PPS.11.1.133.

Autophagy plays an important role in the process of plant development and interaction with pathogens such as fungi, bacteria, and plant viruses. Autophagy is linked to immunity and disease resistance through inhibition of programmed cell death (PCD) and is recognized as an important defense component in plants. Autophagy also helps selectively eliminate pathogens through specific interactions. A number of pathogens have acquired the ability to cope with or evade autophagy and use it to develop the disease. Some other pathogens also use the autophagy system as pathogenic factors. Therefore, understanding cellular processes such as responses related to autophagy genes are very important for studying pathological physiology and plant immunity. The role of autophagy in the immune system and the plant's defense response to pathogens is described in this article.







Full-Text [PDF 436 kb]   (967 Downloads)    
Type of Study: Extentional | Subject: Special
Received: 2021/07/11 | Accepted: 2021/11/6

References
1. Anding AL, Baehrecke EH (2017) Cleaning house: selective autophagy of organelles. Developmental Cell 41:10-22. [DOI:10.1016/j.devcel.2017.02.016] [PMID] [PMCID]
2. Bassham DC (2007) Plant autophagy-more than a starvation response. Current Opinion in Plant Biology 10:587-593. [DOI:10.1016/j.pbi.2007.06.006] [PMID]
3. Chen Q, Soulay F, Saudemont B, Elmayan T, Marmagne A, Masclaux-Daubresse C (2018) Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling. Plant and Cell Physiology 60:343-52. [DOI:10.1093/pcp/pcy214] [PMID]
4. Corral-Ramos C, Roca MG, Di Pietro A, Roncero MIG, Ruiz-Roldán C (2015) Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum. Autophagy 11:131-144. [DOI:10.4161/15548627.2014.994413] [PMID] [PMCID]
5. Dagdas YF, Belhaj K, Maqbool A (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. Elife 5:e10856. [DOI:10.7554/eLife.10856] [PMID] [PMCID]
6. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826-833. [DOI:10.1038/35081161] [PMID]
7. Floyd BE, Morriss SC, Macintosh GC, Bassham DC (2012) What to Eat: Evidence for Selective Autophagy in Plants F. Journal of Integrative Plant Biology 54:907-920. [DOI:10.1111/j.1744-7909.2012.01178.x] [PMID]
8. Fu ZQ, Yan S, Saleh A. Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228-232. [DOI:10.1038/nature11162] [PMID] [PMCID]
9. Hafrén A, Macia J-L, Love AJ, Milner JJ, Drucker M, Hofius D (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proceedings of the National Academy of Sciences 114: E2026-E2035. [DOI:10.1073/pnas.1610687114] [PMID] [PMCID]
10. Hafrén A, Üstün S, Hochmuth A, Svenning S, Johansen T, Hofius D (2018) Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiology 176:649-662. [DOI:10.1104/pp.17.01198] [PMID] [PMCID]
11. Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, Qian L, Liu N, Wang Y, Han S, Cheng J (2017)Autophagy functions as an antiviral mechanism against geminiviruses in plants. Elife 6:e23897. [DOI:10.7554/eLife.23897] [PMID] [PMCID]
12. Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jørgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137:773-783. [DOI:10.1016/j.cell.2009.02.036] [PMID]
13. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323-329. [DOI:10.1038/nature05286] [PMID]
14. Kurusu T, Koyano T, Hanamata S (2014) OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10:878-88. [DOI:10.4161/auto.28279] [PMID] [PMCID]
15. Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. The Plant Journal 66:953-68. [DOI:10.1111/j.1365-313X.2011.04553.x] [PMID]
16. Leary AY, Sanguankiattichai N, Duggan C (2018) Modulation of plant autophagy during pathogen attack. Journal of experimental Botany 69:1325-33. [DOI:10.1093/jxb/erx425] [PMID]
17. Lenz HD, Haller E, Melzer E (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. The Plant Journal 66:818-830. [DOI:10.1111/j.1365-313X.2011.04546.x] [PMID]
18. Li F, Chung T, Pennington JG (2015) Autophagic recycling plays a central role in maize nitrogen remobilization. The Plant Cell 27:1389-1408. [DOI:10.1105/tpc.15.00158] [PMID] [PMCID]
19. Li Y, Kabbage M, Liu W, Dickman MB (2016) Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants. The Plant Cell 28:233-247. [DOI:10.1105/tpc.15.00626] [PMID] [PMCID]
20. Liu XH, Chen SM, Gao HM (2015) The small GTP ase MoYpt 7 is required for membrane fusion in autophagy and pathogenicity of M agnaporthe oryzae. Environmental Microbiology 17:4495-4510. [DOI:10.1111/1462-2920.12903] [PMID]
21. Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567-77. [DOI:10.1016/j.cell.2005.03.007] [PMID]
22. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature reviews Molecular Cell Biology 8:741-752. [DOI:10.1038/nrm2239]
23. Mamun M, Tang C, Sun Y (2018) Wheat gene TaATG8j contributes to stripe rust resistance. International Journal of Molecular Sciences 19:1666. [DOI:10.3390/ijms19061666] [PMID] [PMCID]
24. Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Overview of macroautophagy regulation in mammalian cells. Cell Research 20:748-762. [DOI:10.1038/cr.2010.82] [PMID]
25. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069. [DOI:10.1038/nature06639] [PMID] [PMCID]
26. Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proceedings of the National Academy of Sciences 109:10113-10118. [DOI:10.1073/pnas.1201628109] [PMID] [PMCID]
27. Patel S, Dinesh-Kumar SP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4:20-27. [DOI:10.4161/auto.5056] [PMID]
28. Popa C, Li L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll NS, Ariño J, Valls M (2016) The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Scientific Reports 6:1-14. [DOI:10.1038/srep27058] [PMID] [PMCID]
29. Ran J, Hashimi SM, Liu J-Z (2020) Emerging Roles of the Selective Autophagy in Plant Immunity and Stress Tolerance. International Journal of Molecular Sciences 21:6321. [DOI:10.3390/ijms21176321] [PMID] [PMCID]
30. Seay M, Patel S, Dinesh‐Kumar SP (2006) Autophagy and plant innate immunity. Cellular Microbiology 8:899-906. [DOI:10.1111/j.1462-5822.2006.00715.x] [PMID]
31. Stephani M, Dagdas Y (2020) Plant selective autophagy-still an uncharted territory with a lot of hidden gems. Journal of Molecular Biology 432:63-79. [DOI:10.1016/j.jmb.2019.06.028] [PMID]
32. Taheri Sedeh H, Bazgir E (2021) Thermopriming-Induced Autophagy in Shoot Apical Meristem of Arabidopsis. Iranian Journal of Biotechnology 19:22-31.
33. Üstün S, Hafrén A, Hofius D (2017) Autophagy as a mediator of life and death in plants. Current Opinion in Plant Biology 40:122-30. [DOI:10.1016/j.pbi.2017.08.011] [PMID]
34. Van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends in Plant Science 10:117-122. [DOI:10.1016/j.tplants.2005.01.006] [PMID]
35. Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H (2015) Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiology 168:60-73. [DOI:10.1104/pp.15.00242] [PMID] [PMCID]
36. Wang P, Mugume Y, Bassham DC (2018) New advances in autophagy in plants: regulation, selectivity and function. Proceedings of the Seminars in Cell and Developmental Biology 80:113-122. [DOI:10.1016/j.semcdb.2017.07.018] [PMID] [PMCID]
37. Wei Y, Liu W, Hu W, Liu G, Wu C, Liu W, Zeng H, He C, Shi H (2017) Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. Plant Cell Reports 36:1237-1250. [DOI:10.1007/s00299-017-2149-5] [PMID]
38. Xiong Y, Contento AL, Bassham DC (2005a) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. The Plant Journal 42:535-46. [DOI:10.1111/j.1365-313X.2005.02397.x] [PMID]
39. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005b) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Molecular Biology 59:191-203. [DOI:10.1007/s11103-005-6503-6] [PMID]
40. Yan Y, Wang P, He C, Shi H (2017) MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochemical and Biophysical Research Communications 494:20-26. [DOI:10.1016/j.bbrc.2017.10.091] [PMID]
41. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. In. Autophagy in infection and immunity. Springer 1-32. [DOI:10.1007/978-3-642-00302-8_1] [PMID] [PMCID]
42. Yu J, Zhen X, Li X, Li N, Xu F (2019) Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE). Frontiers in Plant Science 10:584. [DOI:10.3389/fpls.2019.00584] [PMID] [PMCID]
43. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. The Plant Cell 21:2914-2927. [DOI:10.1105/tpc.109.068635] [PMID] [PMCID]
44. Zeng H, Xie Y, Liu G, Lin D, He C, Shi H (2018) Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. Plant Molecular Biology 97:201-214. [DOI:10.1007/s11103-018-0733-x] [PMID]
45. Zheng W, Zhou J, He Y (2015) Retromer is essential for autophagy-dependent plant infection by the rice blast fungus. PLoS Genetics 11:e1005704. [DOI:10.1371/journal.pgen.1005704] [PMID] [PMCID]
46. Zhou J, Wang J, Cheng Y, Chi YJ, Fan B, Yu JQ, Chen Z (2013) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genetics 9:e1003196. [DOI:10.1371/journal.pgen.1003196] [PMID] [PMCID]
47. Zvereva AS, Golyaev V, Turco S, 2016. Viral protein suppresses oxidative burst and salicylic acid‐dependent autophagy and facilitates bacterial growth on virus‐infected plants. New Phytologist 211:1020-1034. [DOI:10.1111/nph.13967] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb