جلد 6، شماره 2 - ( 6-1396 )                   جلد 6 شماره 2 صفحات 32-24 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholamnezhad J. (2017). Plants Defense Mechanisms Against Pathogens. Plant Pathol. Sci.. 6(2), 24-32. doi:10.29252/pps.6.2.24
URL: http://yujs.yu.ac.ir/pps/article-1-169-fa.html
غلام نژاد جلال. سازوکارهای دفاعی گیاهان در برابر بیمارگرها دانش بیماری شناسی گیاهی 1396; 6 (2) :32-24 10.29252/pps.6.2.24

URL: http://yujs.yu.ac.ir/pps/article-1-169-fa.html


دانشگاه اردکان ، jgholamnezhad@ardakan.ac.ir
چکیده:   (12915 مشاهده)

غلام‌نژاد ج. 1396. سازوکارهای دفاعی گیاهان در برابر بیمارگرها. دانش بیماری‌شناسی گیاهی 6(2): 32-24.

گیاهان دارای سازوکارهای دفاعی متعددی هستند، که می­توان آن­ها را با ریزجانداران یا مواد شیمیایی تحریک و فعال کرد. پنج نوع مقاومت القایی در گیاهان عبارتند از مقاومت اکتسابی موضعی، مقاومت اکتسابی سیستمیک،  تنظیم سیستمیک خاموشی ژن‌ها،  مقاومت سیستمیک القاشده و  واکنش سیستمیک در برابر زخم. مقاومت اکتسابی سیستمیک مهمترین نوع مقاومت القایی است، که حفاظت مداوم و طولانی‌مدت علیه آلودگی در برابر دامنه وسیعی از بیمارگرها را در گیاهان موجب می­شود. تشکیل پروتیین­های مرتبط با بیماری‌زایی، تغییر دیواره سلولی با رسوب و اتصال پلی‌ساکاریدها، پروتیین­ها، گلیکوپروتیین­ها، فنل‌ها،تولید فیتوآلکسین‌ها و لیگنینی شدن مراحل بروز این نوع مقاومت در گیاهان هستند.

متن کامل [PDF 667 kb]   (5895 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1395/2/14 | پذیرش: 1396/2/8

فهرست منابع
1. Brandazza A., Angeli S., Tegoni M., Cambillau C. and Pelosi P. 2004. Plant stress proteins of the thaumatin-like family discovered in animals. FEBS Letters 572:3-7. 3. Dempsey D. M. A., Silva H. and Klessig D. F. 1998. Engineering Disease and Pest Resistance in Plants. Trends Microbiology 6:54-61. https://doi.org/10.1016/S0966-842X(97)01186-4 [DOI:10.1016/j.febslet.2004.07.003]
2. Farahbakhsh F. and Massah A. 2015. Genetic of resistance to plant disease. Plant Pathology Science 4:64-74. 5. Fierens E., Rombouts S., Gebruers K., Goesaert H., Brijs K., Beaugrand J., Volckaert G., Van Campenhout S., Proost P., Courtin C. M. and Delcour J. A. 2007. TLX1, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochemical Journal 403:583-591. 6. Gholamnejad J., Etebarian H. R., Roustaee A., Sahebani N. A. 2009. Biological control of apples blue mold by isolates of Saccharomyces cerevisiae. Journal of Plant Protection Research 49:270275. https://doi.org/10.2478/v10045-009-0042-0 [DOI:10.1042/BJ20061291]
3. Gholamnejad J., Etebarian H. R. and Sahebani N. 2010. Biological control of apple blue mold with Candida membranifaciens and Rhodotorula mucilaginosa. African Journal of Food Science 4:001-007.
4. Giberti S., Bertea C. M., Narayana R., Maffei M. E. and Forlani G. 2012. Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. Journal of Plant Physiology 169:249–254. [DOI:10.1016/j.jplph.2011.10.008]
5. Gong M., Li Y., Dai X., Tian M. and Li Z. 2001. Involvment of calcium and calmodulin in the acquisition of HS inuced thermo tolerance in maize seeding. Journal of Plant Physiology 150:615-621. 10. Hong T. Y. and Meng M. 2004. Biochemical characterization and antifungal activity of an endo-1,3-ß-glucanase of Paenibacillus sp. isolated from garden soil. Applied Microbiology and Biotechnology 61:472-478. https://doi.org/10.1007/s00253-003-1249-z [DOI:10.1016/S0176-1617(97)80328-8]
6. Jafary H., Albertazzi G., Marcel T. C. and Niks R.E. 2008. High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339. 12. Kim Y. H., Kim C.Y., Song W. K., Park D. S., Kwon S. Y., Lee H. S., Bang J. W. and Kwak S. S. 2008. Overexpression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867-881. https://doi.org/10.1007/s00425-007-0663-3 [DOI:10.1534/genetics.107.077552]
7. Lange B. M., Lapierre C., Sandermann H Jr. 1995. Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiology 108:1277-1287. [DOI:10.1104/pp.108.3.1277]
8. Liu Q. and Xue Q. 2006. Computational identification of novel PR-1-type genes in Oryza sativa. Journal of Genetics 85:193-198. 15. Mandal S. 2010. Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. African Journal of Biotechnology 9:8038–8047. https://doi.org/10.5897/AJB10.984 [DOI:10.1007/BF02935330]
9. Marjamaa K., Kukkola E. M. and Fagerstedt K. V. 2009. The role of xylem class III peroxidases in lignifi cation. Journal of Experimental Botany 60:367-376. 17. Mohr P. and Cahill D. M. 2001. Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiological and Molecular Plant Pathology 58:31–41. https://doi.org/10.1006/pmpp.2000.0306 18. Mukherjee A. K., Carp M. J., Zuchman R., Ziv T., Horwitz B. A. and Gepstein S. 2010. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. Journal of Proteomics 73:709-720. https://doi.org/10.1016/j.jprot.2009.10.005 19. Niderman T., Genetet I., Buryere T. and Gees R. 1995. Pathogenesis-related PR-1 proteins are antifungal. isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology 108:17–27. https://doi.org/10.1104/pp.108.1.17 [DOI:10.1093/jxb/ern278]
10. Niks R. E., Parlevliet, J. E., Lindhout P. and Y. Bai. 2011. Breeding crops with resistance to disease and pests. Wageningen Academic Press, Wageningen, The Netherlands, 202. [DOI:10.3920/978-90-8686-171-2]
11. Passardi F., Tognolli M., de Meyer M., Penel C. and Dunand C. 2006. Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223:965-974. [DOI:10.1007/s00425-005-0153-4]
12. Rengel D., Graham R. and Pedler J. 1994. Time-course of biosynthesis of phenolics and lignin in root of wheat genotypes differing in manganese efficiency and resistance to take-all fungus. Annals of Botany 74:471-477. [DOI:10.1006/anbo.1994.1143]
13. Saikia R., Singh B. P., Kumar R. and Arora D. K. 2005. Detection of Pathogenesis-related Proteins– Chitinase and â-1,3-Glucanase in Induced Chickpea: Current Science 89:659-663.
14. Senthil-Kumar M., Mysore K. S. 2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annual Review Phytopathology 51:407-27. [DOI:10.1146/annurev-phyto-082712-102319]
15. Shatters R. G., Boykin L. M., Lapointe S. L., Hunter W. B. and Weathersbee A. A. 2006. Phylogenetic and structural relationships of the PR5 gene family reveal an ancient multigene family conserved in plants and select animal taxa. Journal of Molecular Evolution 63:12-29. [DOI:10.1007/s00239-005-0053-z]
16. Ten E., Ling C., Wang Y., Srivastava A., Dempere L. A. and Vermerris W. 2014. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 13:327-338. [DOI:10.1021/bm401555p]
17. Theis N. and Lerdau M. 2003. The evolution of function in plant secondary metabolites. International Journal of Plant Science 164:93–102. [DOI:10.1086/374190]
18. Truman W., de Zabala M. T. and Grant M. 2006. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defense responses during pathogenesis and resistance. The Plant Journal 46:14–33. [DOI:10.1111/j.1365-313X.2006.02672.x]
19. Tuzun S. and Bant, E. 2006. The possible role of PR proteins in multigenic and induced systemic resistance. In Multigenic and induced systemic resistance in plants. 112-142. Springer US. 34. Vance C. P., Kirk T. K. and Sherwood R. T. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18:259-288. https://doi.org/10.1146/annurev.py.18.090180.001355 35. Wang X., Tang C., Deng L., Cai G., Liu X., Han Q., Buchenauer H., Wei G., Han D., Huang L. and Kang Z. 2010. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiologia Plantarum 139:27-38. https://doi.org/10.1111/j.1399-3054.2009.01338.x [DOI:10.1007/0-387-23266-4_6]
20. Yang Q. and Gong Z. 2002. Purification and characterization of an ethylene-induced antifungal protein from leaves of guilder rose (Hydrangea macrophylla). Protein Expression and Purification, 24:76-82. [DOI:10.1006/prep.2001.1551]
21. Zamani A., Sturrock R. N., Ekramoddoullah A. K. M., Liu J. J. and Yu X. 2004. Gene cloning and tissue expression analysis of a PR-5 thaumatin-like protein in Phellinus weirii infected douglas-fir. Biochemistry and Cell Biology 94:1235-1243.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه یاسوج دانش بیماری شناسی گیاهی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb