Volume 6, Issue 2 (9-2017)                   Plant Pathol. Sci. 2017, 6(2): 68-77 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinzadeh A, Davari M, Habibi-Yangjeh A. (2017). Application of Nanomaterials in Management of Fungal Plant Diseases. Plant Pathol. Sci.. 6(2), 68-77. doi:10.29252/pps.6.2.68
URL: http://yujs.yu.ac.ir/pps/article-1-154-en.html
Departments of Chemistry and Plant Protection,University of Mohaghegh Ardabili, Ardabil, Iran , mdavari@uma.ac.ir
Abstract:   (8646 Views)

Hoseinzadeh A., Davari M. and Habibi-Yangjeh A. 2017. Applications of nanomaterials in the fungal plant diseases management. Plant Pathology Science 6(2):68-77.

The use of nanotechnology in plant disease management has been seriously considered by researchers in recent years. Some of these reteaches have shown the antifungal effects of nano zinc oxide on Botrytis cinerea and Penicillium expansum; nano copper oxide on Aspergillus flavus; silver nanocomposite compounds (SiO₂/Ag₂S) on Aspergillus niger; Fe₃O₄/ZnO/AgBr on Fusarium graminearum, F. oxysporum and Botrytis cinerea, and carbon nanomaterials on F. graminearum. Their antifungal mechanisms are including: degradation of lipid and protein, damage to cell membranes, water channels blocking by nanomaterials and loss of spore water and plasmolysis and the inhibition of growth or destruction of fungal hyphae and prevent the sporulation.

Full-Text [PDF 230 kb]   (1782 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/05/13 | Accepted: 2017/04/22

References
1. Afzal A. M., Rahber-Bhatti M. H. and Aslam M. 1997. Antibacterial activity of plant diffusate against Xanthomonas campestris pv. citri. International Journal of Pest Management 43:49-53.
2. Agrios G. N. 2005. Plant Pathology, 5th ed. Academic Press, San Francisco, California. 922p.
3. Borkow G. and Gabbay J. 2004. Putting copper into action: copper impregnated products with potent biocidal activities. Federation of American Societies for Experimental Biology Journal 18:1728-1730, [DOI:10.1096/fj.04-2029fje]
4. Borkow G., Zhou S. S., Page T. and Gabbay, J. 2010. A novel antiinfluenza copper oxide containing respiratory face mask. PLoS One 5:e11295. [DOI:10.1371/journal.pone.0011295]
5. Dias H. V. R., Batdorf K. H., Fianchini M., Diyabalanage H. V. K., Carnahan S., Mulcahy R., Rabiee A., Nelson K., van Waasbergen L. G. and Inorg J. 2006. Antimicrobial properties of highly fluorinated silver (l) tris (pyrazolyl) borates. Biochemistry 100:158-160. [DOI:10.1016/j.jinorgbio.2005.10.003]
6. Fateixa S., Marcia C. N., Adelaide A., Joao O. and Tito T. 2009. Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids and Surfaces B: Biointerfaces 74:304-308. [DOI:10.1016/j.colsurfb.2009.07.037]
7. Fox C. L. 1968. Silver sulfadiazine-a new topical therapy for Pseudomonas in burns. Archives of Surgery 96:184-188. [DOI:10.1001/archsurg.1968.01330200022004]
8. Gabbay J., Mishal J., Magen E., Zatcoff R. C., Shemer-Avni Y. and Borkow G. 2006. Copper oxide impregnated textiles with potent biocidal activities. Journal of Industrial Textiles 35:323-335 [DOI:10.1177/1528083706060785]
9. Grunlan J. C., Choi J. K. and Lin A. 2005. Antimicrobial behavior of polyelectrolyte multilayer films containing certimide and silver. Biomacromolecule 6:1149-1153. [DOI:10.1021/bm049528c]
10. He L., Liu Y., Mustapha A. and Lin M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research 166:207-215. [DOI:10.1016/j.micres.2010.03.003]
11. Hoseinzadeh A., Habibi-Yangjeh A. and Davari M. 2016. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by microwave-assisted method. Progress in Natural Science: Materials International 26:334-340 [DOI:10.1016/j.pnsc.2016.06.006]
12. Kanhed P., Birla S., Gaikwad S., Gade A., Seabra A. B., Rubilar O., Duran N. and Rai M. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters 115:13-17. [DOI:10.1016/j.matlet.2013.10.011]
13. Kendall S., Hollomon D. W., Ishi H. and Heaney, S. P. 1994. Characterization of benzimidazole resistant strains of Rhynchosporium secalis. Pesticide Science 40:175-181. [DOI:10.1002/ps.2780400302]
14. Kumar R., Howdle S., Munstedt H. and Biomed J. 2005. Polyamide/silver antimicrobials: effect of filler types on the silver ion release. Journal of Biomedical Materials Research Part B: Applied Biomaterials 75:311-319. [DOI:10.1002/jbm.b.30306]
15. Narayanasamy A. 2002. The ACCESS model: a transcultural nursing practice framework. British Journal of Nursing 11:643-650. [DOI:10.12968/bjon.2002.11.9.10178]
16. Oxley S. J. P., Cooke L. R., Black L., Hunter A. and Mercer P. C. 2003. Management of Rhynchosporium in different barley varieties and cropping systems. Home-Grown Cereals Authority, Project Report 315, London.
17. Padmavathy N. and Vijayaraghavan R. 2008. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Science and Technology of Advanced Materials 9:1-7. [DOI:10.1088/1468-6996/9/3/035004]
18. Phiwdang K., Phensaijai M. and Pecharapa W. 2013. Study of antifungal activities of CuO/ZnO nanocomposites synthesized by co-precipitation method. Advanced Materials Research 802:89-93 [DOI:10.4028/www.scientific.net/AMR.802.89]
19. Rezaei M. K., Karami E. and Gibson J. 2006. Conceptualizing sustainable agriculture: Iran as an illustrative case. Journal of Sustainable Agriculture 27:25-56. 22. Sadravi M. and Kheradmand Motlagh G. 2013. Applications of nanotechnology in plant pathology. Plant Pathology Science 2:38-44. [DOI:10.1300/J064v27n03_04]
20. Sawai J. and Yoshikawa T. 2004. Quantitative evaluation of antifungal activity of metallic oxide -powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of Applied Microbiology 96:803-809. [DOI:10.1111/j.1365-2672.2004.02234.x]
21. Strange R. N. and Scott P. R. 2005. Plant disease: A threat to global food security. Annual Review of Phytopathology 43:83-116. [DOI:10.1146/annurev.phyto.43.113004.133839]
22. Wang X., Liu X., Chen J., Han H. and Yuan Z. 2014. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798-806. [DOI:10.1016/j.carbon.2013.11.072]
23. Waxman M. F. 1998. The Agrochemical and Pesticides Safety Handbook. CRC Press. Florida. .616p. [DOI:10.1201/9781420049251]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb