Volume 3, Issue 2 (3-2017)                   jfer 2017, 3(2): 1-12 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rooki M, Tabari Kouchaksaraei M, Sadati S E. (2017). Effect of Rhyzobacteria Inoculation on Improvement of Growth Characteristics of Mediterranean Cypress Seedling under Water Deficit Stress. jfer. 3(2), 1-12.
URL: http://yujs.yu.ac.ir/jzfr/article-1-103-en.html
Professor, Department of Forestry Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran , mtabari@modares.ac.ir
Abstract:   (7877 Views)
Background and objectives: Mediterranean Cypress (Cupressus sempervirens var. fastigiata) is a native, evergreen species. Due to its various merits, particularly its wide use in parks and urban green spaces, it is of interest in most climatic regions of Iran, including Zagros provinces. Due to the poverty of soil and limitation in water sources, the production of seedlings of this species has become particularly problematic in some of these regions. By using rhizobacteria Pseudomonas fluorescens inoculation in soil, for the first time, the present study aims to determine the resistance and variations of growth characteristics of seedlings under water deficit conditions.Materials and methods: The experiment was conducted as a factorial, using a completely randomized design with two treatments (i.e., with rhizobacteria and without rhizobacteria), different watering levels (3, 6, 9 and 12 days) in three replicates. After 5 months, growth characteristics of seedlings were measured.Results: Increasing the watering period (water deficit) caused to significantly decrease the survival, diameter, shoot biomass and total biomass, so that all seedlings were died under 12-day watering level. In watering period of 9 days, survival was reduced to 49.83 percent. There was no significant difference in collar diameter, root length, root volume and root/shoot biomass with water deficit intensity. However, the survival rate, height growth, shoot biomass, root biomass, total biomass and seedling quality index were greater in seedlings inoculated with rhizobacteria, compared with those of non-inoculated seedlings.Conclusion: The seedlings of Mediterranean Cypress inoculated with Pseudomonas fluorescens rhizobacteria are able to tolerate the water deficit stress and increase their growth performance; however, under optimal conditions, the rhizobacteria inoculation has no positive effect on survival rate of the seedlings.
 
Full-Text [PDF 237 kb]   (2611 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/08/31 | Accepted: 2017/02/13

References
1. Ahemad, M. & Kibret, M. 2014. Mechanisms and applications of plant growth promoting Rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1): 1-20. [DOI:10.1016/j.jksus.2013.05.001]
2. Ahmadloo, F., Tabari, M., Yousefzadeh, H. & Kooch, Y. 2012. Effects of soil nutrient on seedling performance of Arizona cypress and Medite cypress. Annals of Biological Research, 3(3): 1369-1380.
3. Akbari, V. & Jalili Marandi, R. 2014. Effect of cycocel on growth and photosynthetic pigments of tow olive cultivars under different irrigation intervals. Journal of Horticulture Science, 460-469.
4. Bissonnette, L., St-Arnaud, M. & Labrecque, M. 2010. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with Arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil, 332(1-2): 55-67. [DOI:10.1007/s11104-009-0273-x]
5. Dichio, B., Romano, M., Nuzzu, V. & Xiloyannis, C. 2000. Soil water availability and relationship between canopy and roots in young olive trees (cv., Coratana). In IV International Symposium on Olive Growing, Potenza, Italy. 2000 Sep 25, 586: 255-258. [DOI:10.17660/ActaHortic.2002.586.48]
6. Dickson, A., Leaf, A.L. & Hosner, J.F. 1960. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1): 10-13. [DOI:10.5558/tfc36010-1]
7. Dodd, I.C., Belimov, A.A., Sobeih, W.Y., Safronova, V.I., Grierson, D. & Davies, W.J. 2004. Will modifying plant ethylene status improve plant productivity in water-limited environments. In Proceedings for the 4th International Crop Science Congress, Brisbane, Australia, 26.
8. Dominguez, J.A., Martin, A., Anriquez, A. & Albanesi, A. 2012. The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza, 22(6): 429-436 [DOI:10.1007/s00572-011-0420-0]
9. Dominguez, N., Daniel, M., Ana, D.L.C., Jose, A. & Saiz D.O. 2013. Effects of Pseudomonas fluorescens on the water parameters of Mycorrhizal and Non-Mycorrhizal seedlings of Pinus halepensis. Agronomy Journal, 3(3): 571-582 [DOI:10.3390/agronomy3030571]
10. Elfeel, A.A. & Al-Namo, M.L. 2011. Effect of imposed drought on seedlings growth, water use efficiency and survival of three arid zone species (Acacia tortilissub spraddiana, Salvadora persica and Leptadenia pyrotechnica). Agriculture and Biology Journal of North America, 2(3): 493-498. [DOI:10.5251/abjna.2011.2.3.493.498]
11. Garau, A.M., Lemcoff, J.H., Ghersa, C.M. & Beadle, C.L. 2008. Water stress tolerance in Eucalyptus globulus Labill, Subsp. Maidenii (F. Muell.) saplings induced by water restrictions imposed by weeds. Forest Ecology and Management, 255(7): 2811-2819. [DOI:10.1016/j.foreco.2008.01.054]
12. Garcia, J.A.L., Domenech, J., Santamaria, C., Camacho, M., Daza, A. & Manero, F.J.G. 2004. Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environmental and Experimental Botany, 52(3): 239-251. [DOI:10.1016/j.envexpbot.2004.02.003]
13. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41: 109-117. [DOI:10.1139/m95-015]
14. Glick, B.R., Cheng, Z., Czarny, J. & Duan, J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3): 329-339. [DOI:10.1007/s10658-007-9162-4]
15. Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R. & Panneerselvam, R. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces, 60(1): 7-11. [DOI:10.1016/j.colsurfb.2007.05.012]
16. Liu, F., Xing, S., Ma, H., Du, Z. & Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology, 97(20): 9155-9164. [DOI:10.1007/s00253-013-5193-2]
17. Lugtenberg, B. & Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63(1): 541-556. [DOI:10.1146/annurev.micro.62.081307.162918]
18. Marulanda, A., Barea, J.M. & Azcon, R. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28(2): 115-124. [DOI:10.1007/s00344-009-9079-6]
19. Nagakura, J., Shigenaa, H.A. & Takahashi, M. 2004. Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain. Eastern Japan. Journal of Forest Research, 12(2): 143-151. [DOI:10.1007/s10310-006-0257-0]
20. Oliet, J., Planelles, R., Artero, F. & Jacobs, D. 2005. Nursery fertilization and tree shelters affect long-term field response of Acacia salicina Lindl, planted in Mediterranean semiarid conditions. Forest Ecology and Management, 215: 339-351. [DOI:10.1016/j.foreco.2005.05.024]
21. Oliet, J.A., Planelles, R., Artero, F., Valverde, R., Jacobs, D.F. & Segura, M.L. 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forests, 37(3):313-331. [DOI:10.1007/s11056-008-9126-3]
22. Rekha, P.D., Lai, W.A., Arun, A.B. & Young, C.C. 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic condition. Bioresource Technology, 98: 447-451. [DOI:10.1016/j.biortech.2006.01.009]
23. Rincon, A., Valladares, F., Gimeno, T.E. & Pueyo, J.J. 2008. Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree physiology, 28 (11): 1693-1701. [DOI:10.1093/treephys/28.11.1693]
24. Rosas, S.B., Andrez, J.A., Rovera, M. & Correa, N.S. 2006. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biology and Biochemistry, 38: 3502-3505. [DOI:10.1016/j.soilbio.2006.05.008]
25. Sanchez-Blanco, M.J., Alvarez, S., Navarro, A. & Banon, S. 2008. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. Journal of Plant Physiology, 166(5): 467-476. [DOI:10.1016/j.jplph.2008.06.015]
26. Saxton, K.E., Rawls, W.J., Romberger, J.S. & papendick, R.I. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50(4):1031-1036. [DOI:10.2136/sssaj1986.03615995005000040039x]
27. South, D.B., Harrisa, S.W., Barnett, J.P., Hainds. M.J. & Gjerstad, D.H. 2005. Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, USA. Forest Ecology and Management, 204(2-3): 385-398. [DOI:10.1016/j.foreco.2004.09.016]
28. Stepanova, A.N., Robertson-Hoyt, J., Yun, L.M., Benavente, D.Y., Xie, K., Dolezal, S., Jurgens, G. & Alonso, J.M. 2008. TAA1-mediated Auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 133(1):177-191. [DOI:10.1016/j.cell.2008.01.047]
29. Susiluoto, S. & Berninger, F. 2007. Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fennica, 41 (2): 221. [DOI:10.14214/sf.292]
30. Vassilev, N., Vassileva, M. & Nikolaeva, I. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2): 137-144. [DOI:10.1007/s00253-006-0380-z]
31. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2): 571-586. [DOI:10.1023/A:1026037216893]
32. Vyas, P. & A. Gulati, 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1): 174. [DOI:10.1186/1471-2180-9-174]
33. Xie, H., Pasternak, J.J. & Glick, B.R. 2002. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12- 2 that over produce indoleacetic acid. Current Microbiology, 32: 67-71. [DOI:10.1007/s002849900012]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Forest Ecosystems Researches

Designed & Developed by : Yektaweb