1. Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126. [
DOI:10.1016/S0076-6879(84)05016-3] [
PMID]
2. Ahmad, R., Hussain, S., Anjum, M.A., Khalid, M.F., Saqib, M., Zakir, I., Hassan, A., Fahad, S. and Ahmad, S. 2019. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Hasanuzzaman, M., Hakeem, K., Nahar, K. and Alharby, H. (eds.). Springer Press, Plant Abiotic Stress Tolerance Agronomic, Molecular and Biotechnological Approaches, pp. 191-205. [
DOI:10.1007/978-3-030-06118-0_8]
3. Akhkha, A., Boutra, T. and Alhejely, A. 2011. The rates of photosynthesis, chlorophyl1 content, dark respiration, proline and abscisic acid (ABA) in wheat (Triticum durum) under water deficit conditions. International Journal of Agriculture and Biology, 13(2): 15-221.
4. Ali, E.F. and Hassan, F.A.S. 2018. β-Aminobutyric acid raises salt tolerance and reorganises some physiological characters in Calendula officinalis L. plant. Annual Research & Review in Biology, 30(5): 1-16. [
DOI:10.9734/arrb/2018/v30i530027]
5. Ali, M., Afzal, S., Parveen, A., Kamran, M., Javed, M.R., Abbasi, G.H., Malik, Z., Riaz, M., Ahmad, S. and Chattha, M.S. 2021. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiology and Biochemistry, 158: 208-218. [
DOI:10.1016/j.plaphy.2020.10.040] [
PMID]
6. Ashraf, M., Athar, H.R., Harris P.J.C. and Kwon, T.R. 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97: 45-110. [
DOI:10.1016/S0065-2113(07)00002-8]
7. Bahrasemani, S., Seyedi, A., Fathi, S.H. and Jowkar, M. 2024. The seed priming using putrescine improves, germination indices and seedlings morphobiochemical responses of indigo (Indigofera tinctoria) under salinity stress. Journal of Medicinal Plants and By-products, 13(1):179-188.
8. Basra, S.M.A., Pannu, I.A. and Afzal, I. 2003. Evaluation of seed vigor of hydro and matriprimed wheat (Triticum aestivum L.) seeds. International Journal of Agricultural Biology, 5(2): 121- 123.
9. Bates, L.S., Waldern, R.P. and Tear, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207. [
DOI:10.1007/BF00018060]
10. Bittencourt, M.L.C., Dias, D.C., Dias, L.A. and Araújo, E.F. 2005. Germination and vigour of primed Asparagus seeds. Scientia Agricola, 62(4): 319-324. [
DOI:10.1590/S0103-90162005000400003]
11. Bradford, M.M. 1976. Rapid A and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. [
DOI:10.1016/0003-2697(76)90527-3]
12. Brancalion, P.H.S., Novembre, D.L.C., Rodrigues, R.R. and Tay, D. 2008. Priming of Mimosa bimucronata seeds: A tropical tree species from Brazil. Acta Horticulturae, 82: 163-168. [
DOI:10.17660/ActaHortic.2008.782.18]
13. Chakraborty, A. and Bordolui, S.K. 2021. Impact of seed priming with Ag-nanoparticle and GA3 on germination and vigour in green gram. International Journal of Current Microbiology and Applied Sciences, 10(3): 941-950.
14. Chen. K., Fessehaie, A. and Arora, R. 2013. Aquaporin expression during seed osmopriming and post-priming germination in spinach. Plant Biology, 57: 193-198. [
DOI:10.1007/s10535-012-0266-0]
15. Chojnowski, F.C. and Come, D. 1997. Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Science Research, 7: 323-331. [
DOI:10.1017/S096025850000372X]
16. Chun, S.C., Paramasivan, M. and Chandrasekaran, M. 2018. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Journal of Frontiers in Microbiology, 9: 2525. [
DOI:10.3389/fmicb.2018.02525] [
PMID] [
]
17. Cirka, M., Kaya, A.R., and Eryigit, T. 2021. Influence of temperature and salinity stress on seed germination and seedling growth of soybean (Glycine max L.). Legume Research, 44(9): 1053-1059. [
DOI:10.18805/LR-628]
18. Dehghan, Z., Movahhedi Dehnavi, M., Balouchi, H. and Salihi, A. 2018. Effect of salicylic acid on some physiological characteristics of common purslane (Portulaca oleracea L.) under NaCl stress. Plant Process and Function, 7(23): 97-110. [In Persian].
19. Devika, O.S., Singh, S., Sarkar, D., Barnwal, P., Suman, J. and Rakshit, A. 2021. Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems, 5: 654001. [
DOI:10.3389/fsufs.2021.654001]
20. Diovisalvi, N., Calvo, N.R., Izquierdo, N., Echeverria, H., Divito, G.A. and Garcia, F. 2018. Effects of genotype and nitrogen availability on grain yield and quality in sunflower. Agronomy Journal, 110: 1532-1543. [
DOI:10.2134/agronj2017.08.0435]
21. Ebrahimi, O., Esmaili, M.M., Sabori, H. and Tahmasebi, A. 2013. Effects of salinity and drought stress on germination two species of (Agropyron elongatum, Agropyron desertrum). Desert Ecosystem Engineering Journal, 1(1): 31-38. [In Persian].
22. Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S.D., Mishra, J. and Arora, N.K. 2019. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10: 2791. [
DOI:10.3389/fmicb.2019.02791] [
PMID] [
]
23. Ellis, R.H. and Roberts, E.H. 1980. Seed physiology and seed quality in soybean. Advances in Legume Science, 287-311.
24. Faisal, F., Muhamamd Aamir, I., Aydemir, S.K., Hamid, A., Rahim, N., El Sabagh, A., Khaliq, A. and Siddiqui, M.H. 2020. Exogenously foliage applied micronutrients efficacious impact on achene yield of sunflower under temperate conditions. Pakistan Journal of Botany, 52(4): 1215-1221. [
DOI:10.30848/PJB2020-4(33)]
25. Fazeli-Nasab, B., Khajeh, H., Piri, R. and Moradian, Z. 2023. Effect of humic acid on germination characteristics of Lallemantia royleana and Cyamopsis tetragonoloba under salinity stress. Iranian Journal of Seed Research, 9(2): 51-62. [In Persian]. [
DOI:10.61186/yujs.9.2.51]
26. Feghhenabi, F., Hadi, H., Khodaverdiloo, H. and Van Genuchten, M.T. 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231: 106022. [
DOI:10.1016/j.agwat.2020.106022]
27. Fodorpataki, L., Molnar, K., Tompa, B. and Plugaru, S.R. 2019. Priming with vitamin U enhances cold tolerance of lettuce (Lactuca sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3): 592-598. [
DOI:10.15835/nbha47311433]
28. Foti, R., Abureni, K., Tigere, A., Gotosa, J. and Gere, J. 2008. The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. Journal of Arid Environments, 72: 1127-1130. [
DOI:10.1016/j.jaridenv.2007.11.008]
29. Ghosh, P.K. and Dutta, A. 2022. Pattern of seed development in sunflower (Helianthus annuus L.) as influenced by seed priming. The Pharma Innovation, 11(7): 322-326.
30. Giannopolitis, C.N. and Ries, S.K. 1977. Superoxide dismutase. I. Occurrence in higher plants. Journal of Plant Physiology, 59: 309-314. [
DOI:10.1104/pp.59.2.309] [
PMID] [
]
31. Gomes, D.G., Pelegrino, M.T., Ferreira, A.S., Bazzo, H.B., Zucareli, C., B Seabra, A.B. and Oliveira, H.C. 2021. Seed priming with copper-loaded chitosan nanoparticles promotes early growth and enzymatic antioxidant defense of maize (Zea mays L.) seedlings. Chemical Technology and Biotechnology, 96(8): 2176-2184. [
DOI:10.1002/jctb.6738]
32. Habib, N., Ali, Q., Ali, S., Haider, M.Z., Javed, M.T., Khalid, M., Perveen, R., Alsahli, A.A. and Alyemeni, M.N. 2021. Seed priming with sodium nitroprusside and H2O2 confers better yield in wheat under salinity: Water relations, antioxidative defense mechanism and ion homeostasis. Journal of Plant Growth Regulation, 40: 2433-2453. [
DOI:10.1007/s00344-021-10378-3]
33. Hemeda, H.M. and Klein, B.P. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55: 184-185. [
DOI:10.1111/j.1365-2621.1990.tb06048.x]
34. Hidangmayum, A., Dwivedi, P., Katiyar, D. and Hemantaranjan, A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25: 313-326. [
DOI:10.1007/s12298-018-0633-1] [
PMID] [
]
35. Hoogenboom, G. and Peterson, C.M. 1987. Shoot growth rate of soybean as affected by drought stress. Agronomy Journal, 79(4): 598-607.
https://doi.org/10.2134/agronj1987.00021962007900040003x [
DOI:10.2134/agronj1987.00021962007900040004x]
36. Hoque, M.N., Imran, S., Hannan, A., Paul, N.C., Mahamud, M.A., Chakrobortty, J. and Rhaman, M .S. 2022. Organic amendments for mitigation of salinity stress in plants: A review. Life, 12: 1632. [
DOI:10.3390/life12101632] [
PMID] [
]
37. Hussain, S., Hussain, S., Khaliq, A., Ali, S. and Khan, I .2019. Physiological, biochemical, and molecular aspects of seed priming. Priming and pretreatment of seeds and seedlings. Springer Press, Singapore, pp. 43-62. [
DOI:10.1007/978-981-13-8625-1_3]
38. Hussain, S., Khan, F., Hussain, H.A. and Nie, L. 2016. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Frontiers in Plant Science, 7: 116. [
DOI:10.3389/fpls.2016.00116]
39. ISTA. 2013. International Rules for Seed Testing. Bassersdorf, Switzerland: The International Seed Testing Association (ISTA).
40. Javed, S. A., Shahzad, S. M., Ashraf, M., Kausar, R., Arif, M. S., Albasher, G., Rizwana, H. and Shakoor, A. 2022. Interactive effect of different salinity sources and their formulations on plant growth, ionic homeostasis and seed quality of maize. Chemosphere, 291: 132678. [
DOI:10.1016/j.chemosphere.2021.132678] [
PMID]
41. Kalita, J., Pradhan, A.K., Shandilya, Z.M., Tanti, B. 2018. Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Science, 25: 235-249. [
DOI:10.1016/j.rsci.2018.06.007]
42. Kapoor, N., Aria, A., Siddiqui, M.A., Amir, A. and Kumar, H. 2010. Seed deterioration in chickpea (Cicer arietinum L.) under accelerated ageing. Asian Journal of Plant Sciences, 9: 158-162. [
DOI:10.3923/ajps.2010.158.162]
43. Kaur, S., Gupta, A.K. and Kaur, N. 2006. Effect of hydro and osmopriming of chickpea (Cicer arientinum L.) seeds on enzymes of sucrose and nitrogen metabolism in nodules. Plant Growth Regulation, 49: 177-182. [
DOI:10.1007/s10725-006-9103-9]
44. Kaur, S., Suhalia, A., Sarlach, R.S., Mohd, S., Pritpal, S., Gomti, G., Anureet, B. and Achla, S. 2022. Uncovering the Iranian wheat landraces for salinity stress tolerance at early stages of plant growth. Cereal Research Communications, 56: 6-13.
45. Khan, M.U., Shirazi, M.A., Khan, S.M. and Mujtaba, E. 2010. Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum). Pakistan Journal of Botany, 41(2): 633-638.
46. Landi. S., Capasso, G., Ben Azaiez, F.E. and Jallouli, S. 2019. Different roles of heat shock proteins (70 kDa) during abiotic stresses in barley (Hordeum vulgare) genotypes. Plants, 8(8): 248-267. [
DOI:10.3390/plants8080248] [
PMID] [
]
47. Lei, C., Bagavathiannan, M., Wang, H., Sharpe, S.M., Meng, W. and Yu, J. 2021. Osmopriming with polyethylene glycol (PEG) for abiotic stress tolerance in germinating crop seeds: A Review. Agronomy, 11(11): 2194. [
DOI:10.3390/agronomy11112194]
48. Li, J., Liu, A., Najeeb, U., Zhou, W., Liu, H., Yan, G. and Xu, L. 2021a. Genome-wide investigation and expression analysis of membrane-bound fatty acid desaturase genes under different biotic and abiotic stresses in sunflower (Helianthus annuus L.). International Journal of Biological Macromolecules, 175: 188-198. [
DOI:10.1016/j.ijbiomac.2021.02.013] [
PMID]
49. Li, S., Tan, H.Y., Wang, N., Zhang, Z.J. and Lao, L. 2015. The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences, 16(11): 26087-26124. [
DOI:10.3390/ijms161125942] [
PMID] [
]
50. Li, W., Zeng, Y., Yin, F., Wei, R. and Mao, X. 2021b. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Scientific Reports, 11(1): 19865. [
DOI:10.1038/s41598-021-98107-4] [
PMID]
51. Madady, M., Khomari, S., Javadi, A. and Sofalian, A. 2016. The effect of priming with calcium nitrate and zinc oxide on seed germination and seedling growth of corn cockle under salinity stress. Journal of Plant Process and Function, 5(15): 169-179. [In Persian].
52. Maguire, J.D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigour. Crop Science, 2: 176-177. [
DOI:10.2135/cropsci1962.0011183X000200020033x]
53. McCue, P. and Shetty, K. 2002. A biochemical analysis of mungbean (Vigna radiata) response to microbial polysaccharides and potential phenolic enhancing effects for nutraceutical applications. Food Biotech, 16: 57-79. [
DOI:10.1081/FBT-120004201]
54. McRorie, R.A., Sutherland, G.L., Lewis, G., Barton, M.S. and Glazener, M.R. 1954. Isolation and identification of a naturally occurring analog of methionine. Journal of the American Chemical Society, 76: 115-118. [
DOI:10.1021/ja01630a032]
55. Meftahizade, H. and Rahmati, Z. 2021. Evaluation of germination and growth characteristics of guar (Cyamopsis tetragonoloba L.) genotypes under salinity stress condition. Iranian Journal of Seed Science and Technology, 10(2): 97- 109. [In Persian].
56. Miladinović, D., Hladni, N., Radanović, A., Jocić, S. and Cvejić, S. 2019. Sunflower and climate change: possibilities of adaptation through breeding and genomic selection. Genomic Designing of Climate-Smart Oilseed Crops, 173-238. [
DOI:10.1007/978-3-319-93536-2_4]
57. Miret, J.A. and Munne-Bosch, S. 2014. Plant amino acid-derived vitamins: biosynthesis and function. Amino Acids, 46: 809-824. [
DOI:10.1007/s00726-013-1653-3] [
PMID]
58. Moradi, A., Hoseini-moghadam, M. and Piri, R. 2018. Effect of seed inoculation with Plant Growth Promoting Rhizobactria (PGPR) on some germination, biochemical indices and element contents of fennel (Foeniculum vulgare L.) under salinity stress. Iranian Journal of Field Crop Science, 49(3): 151-165. [In Persian].
59. Momeni, S., Sedgi, M., Seyed Sharifi, R. and Saadat, H. 2022a. The effect of priming with vitamin U on germination and growth indicators of soybean seedlings under salt stress. P. 1-8. 6th National Conference on Innovation in Agriculture, 23 Feb. Animal Sciences and Veterinary Medicine, Tehran, Iran. [In Persian].
60. Momeni, S., Sedgi, M., Seyed Sharifi, R. and Saadat, H. 2022b. The effect of priming with vitamin U on the activity of antioxidant and hydrolytic enzymes of soybean seed under salt stress. P. 1-8. 6th National Conference on Innovation in Agriculture, 23 Feb. Animal Sciences and Veterinary Medicine, Tehran, Iran. [In Persian].
61. Moori, S. and Eisvand, H.R. 2019. The effect of priming with salicylic acid and ascorbic acid on germination indices and biochemical traits in wheat seed deterioration. Iranian Journal of Seed Sciences and Research, 6(3): 381-398. [In Persian].
62. Nascimento, W.M. and West, S.H. 1999. Muskmelon transplant production in response to seed priming. HortTechnology, 9: 35-55. [
DOI:10.21273/HORTTECH.9.1.53]
63. Omidi, H., Leyla, J. and Hasanali, N. 2014. Seeds of medicinal plants and crops. Natural Resources and Environment, 269-189.
64. Omidi, H., Sorushzadeh, A., Salehi, A. and Ghezeli, F. 2005. Evaluation of priming pretreatments on germination rapeseed. Agricultural Science and Technology, 19(2): 1-10. [In Persian].
65. Pagano, A., Macovei, A. and Balestrazzi, A. 2023. Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Reports, 42: 657-688. [
DOI:10.1007/s00299-023-02988-w] [
PMID] [
]
66. Paparella, S., Araújo, S.S., Rossi, G, Wijayasinghe, M., Carbonera, D. and Balestrazzi, A. 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports, 34: 1281-1293. [
DOI:10.1007/s00299-015-1784-y] [
PMID]
67. Patade, V.Y., Bhargava, S. and Suqruasanna. P. 2009. Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agricultural Ecology and Environment, 134: 24-28. [
DOI:10.1016/j.agee.2009.07.003]
68. Piri, R., Moradi, A., Salehi, A. and Balouchi, H. R. 2021. Effect of seed biological pretreatments on germination and seedling growth of cumin (Cuminum cyminum L.) under drought stress. Iranian Journal of Seed Science and Technology, 9(4): 11-26. [In Persian].
69. Primo, D.C., Menezes, R.S.C., de Oliveir, F.F., Dubeux Júnior, J.C.B. and Sampaio, E.V.S. 2018. Timing and placement of cattle manure and/or gliricidia affects cotton and sunflower nutrient accumulation and biomass productivity. Anais da Academia Brasileira de Ciências, 90(1): 415-423. [
DOI:10.1590/0001-3765201820150841] [
PMID]
70. Qiao, W., Li, C. and Fan, L. M. 2014. Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environmental and Experimental Botany, 100: 84-93. [
DOI:10.1016/j.envexpbot.2013.12.014]
71. Ragaey, M.M., Sadak, M.S., Dawood, M.F.A., Mousa, N.H.S., Hanafy, R.S. and Latef, A.A.H.A. 2022. Role of signaling molecules sodium nitroprusside and arginine in alleviating salt-induced oxidative stress in wheat. Plants, 11: 1786. [
DOI:10.3390/plants11141786] [
PMID] [
]
72. Rajabi Dehnavi, A., Zahedi, M. and Ludwiczak, A. 2020. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6): 859. [
DOI:10.3390/agronomy10060859]
73. Rashidifard, A., Chorom, M., Norozi Masir, M. and Roshanfekr, H. 2021. Effect of seed priming by humic acid and zinc on some morphophysiological traits of maize (Zea mays L.) seedlings under saline conditions. Environmental Stresses in Crop Sciences, 14 (4): 115-1125. [In Persian].
74. Rhaman, M.S., Imran, S., Rauf, F., Khatun, M., Baskin, C.C., Murata, Y. and Hasanuzzaman, M. 2020. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(37): 5772-5787. [
DOI:10.3390/plants10010037] [
PMID] [
]
75. Rhaman, M.S., Rauf, F., Tania, S.S., Karim, M.M., Sagar, A., Robin, A.H.K. and Murata, Y. 2021. Seed priming and exogenous application of salicylic acid enhance growth and productivity of okra (Abelmoschus esculentus L.) by regulating photosynthetic attributes. Journal of Experimental Agriculture International, 9: 759-769. [
DOI:10.18006/2021.9(6).759.769]
76. Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023a. The effect of priming with different levels of chitosan on physiological and biochemical traits in French bean (Phaseolus vulgaris L.) under salinity stress. Plant Production Technology, 14(2):75-89. [In Persian]. [
DOI:10.61186/yujs.10.2.21]
77. Saadat, H., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023b. Expression of gibberellin synthesis genes and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iranian Journal of Plant Physiology, 13(4): 4715-4728. [In Persian].
78. Saadat, H., Soltani, E. and Sedghi, M. 2023c. The effect of seed priming with chitosan on germination characteristics and activity of antioxidant enzymes in rice seedlings (Oryza sativa L.) under salinity stress. Plant Process and Function, 12(54):239-258. [In Persian].
79. Saadat, T., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023d. Effect of chitosan on germination indices of common bean (Phaseolus vulgaris) (cv. Sedri) seeds under salt stress, Iranian Journal of Seed Research, 9(2): 151-162. [In Persian]. [
DOI:10.61186/yujs.9.2.151]
80. Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M. and Hasanuzzaman, M. 2021. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2): 277-300. [
DOI:10.3390/antiox10020277] [
PMID] [
]
81. Sairam, R.K., Rao, K.V. and Srivastava, G.C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolytes concentration. Plant Science, 163: 1037-1046. [
DOI:10.1016/S0168-9452(02)00278-9]
82. Sen, A. and Puthur, J.T. 2020. Influence of different seed priming techniques on oxidative and antioxidative responses during the germination of Oryza sativa varieties. Physiology and Molecular Biology of Plants, 26 (3): 551-565. [
DOI:10.1007/s12298-019-00750-9] [
PMID] [
]
83. Shajirat, A., Mahla, R., Maskerbashi, M. and Roshanfekr, H., 2021. The effect of hormonal priming on germination indices of sunflower (Helianthus annuus L) under salt stress, 7th National Congress and 3rd International Congress of Agricultural Sciences and Breeding Plants of Iran, 5-7 Feb, Kerman, Iran. [In Persian].
84. Siddiqui, M.N., Mostofa, M.G., Akter, M.M., Srivastava, A.K., Sayed, M.A., Hasan, M.S. and Tran, L.S.P. 2017. Impact of salt induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinant of salt-tolerant capacity. Chemosphere, 187: 385-394. [
DOI:10.1016/j.chemosphere.2017.08.078] [
PMID]
85. Simões, W.L., Silva, J.S., Oliveira, A.R., Neto, A.R., Drumond, M.A., Limas, J.A. and Nascimento, B.R. 2020. Sunflower cultivation under different irrigation systems and planting spacings in the sub-iddle region of São Francisco Valley. Ciências Agrárias, 41(2): 2899-2910. [
DOI:10.5433/1679-0359.2020v41n6Supl2p2899]
86. Sivritepe, N., Sivritepe, H.O. and Eris, A. 2003.The effects of NaCl priming on salt tolerance in melon seedling grown under saline conditions. Scientia Holticuturae, 97: 229-237. [
DOI:10.1016/S0304-4238(02)00198-X]
87. Tammam, A.A., Alhamd, M.F.A. and Hemeda, M.M. 2008. Study of salt tolerance in wheat (Triticum aestivum L.) cultivar Banysoif. Australian Journal of Crop Science, 1: 115-125.
88. Tania, S.S., Rhaman, M.S. and Hossain, M.M. 2020. Hydro-priming and halopriming improve seed germination, yield and yield contributing characters of okra (Abelmoschus esculentus L.). Tropical Plant Research, 7(1): 86-93. [
DOI:10.22271/tpr.2020.v7.i1.012]
89. Ventura, L., Donà, M., Macovei, A., Carbonera, D., Buttafava, A., Mondoni, A., Rossi, G. and Balestrazzi, A. 2012. Understanding the molecular pathways associated with seed vigor. Plant Physiology and Biochemistry, 60: 196-206. [
DOI:10.1016/j.plaphy.2012.07.031] [
PMID]
90. Yasir, T.A., Muhammad Ateeq, M., Wasaya, A., Hussain, M., Sarwar, N., Khura Mubeen, K., Aziz, M., Iqbal, M.A., Ogbaga, C., Al-Ashkar, I., Md Atikur, R. and El Sabagh, A. 2023. Seed priming and foliar supplementation with β-aminobutyric acid alleviates drought stress through mitigation of oxidative stress and enhancement of antioxidant defense in linseed (Linum usitatissimum L.). Phyton, 92(11): 3114-3131. [
DOI:10.32604/phyton.2023.029502]
91. Zahra, N., Sulaiman, M., Hinai, A., Hafeez, M.B., Rehman, A., Wahid, A., Siddique, K.H.M. and Farooq, M. 2022. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178: 55-69. [
DOI:10.1016/j.plaphy.2022.03.003] [
PMID]
92. Zeid, I.M. 2004. Responses of been (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pakistan Journal of Biological Sciences, 7: 219-225. [
DOI:10.3923/pjbs.2004.219.225]
93. Zhao, C., Zhang, H., Song, H., Zhu, J.K. and Shabala, S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1): 1100017. [
DOI:10.1016/j.xinn.2020.100017] [
PMID] [
]
94. Zheng, M., Tao, Y., Hussain, S., Jiang, Q., Peng, S., Huang, J., Cui, K. and Nie, L. 2016. Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 78: 167-178. [
DOI:10.1007/s10725-015-0083-5]
95. Zhu, Z.H., Sami, A., Xu, Q.Q., Wu, L.L., Zheng, W.Y., Chen, Z.P. and Zhou, K.J. 2021. Effects of seed priming treatments on the germination and development of two rapeseed (Brassica napus L.) varieties under the coinfluence of low temperature and drought. Plos One, 16(9): 236-260. [
DOI:10.1371/journal.pone.0257236] [
PMID] [
]