Volume 11, Issue 2 ((Autumn & Winter) 2025)                   Iranian J. Seed Res. 2025, 11(2): 207-223 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sasanian A, Bashirzadeh A, Kamali E. (2025). Influence of magnetic field intensity and exposure time on germination and physiological traits of rice (Oryza sativa) under cold stress. Iranian J. Seed Res.. 11(2), 207-223.
URL: http://yujs.yu.ac.ir/jisr/article-1-636-en.html
Islamic Azad University, Astara , ali.bashirzadeh56@iau.ac.ir
Abstract:   (317 Views)

Extended abstract
Introduction: Rice (Oryza sativa L.), one of the world's most crucial cereals, serves as a primary nutritional source for over one-third of the global population. Compared to other grains, rice exhibits greater sensitivity to low-temperature stress. Seed priming as a biotechnological tool is a simple, practical, cost-effective, and eco-friendly approach to enhance plant stress tolerance and improve seed germination. This study investigated the germination and physiological responses of rice seeds to varying intensities and durations of electromagnetic field (EMF) exposure under cold stress conditions.
Materials and Methods: In 2024, a factorial experiment was conducted in a completely randomized design at Islamic Azad University, Astara Branch. The experiment evaluated four levels of EMF intensity (0, 50, 100, and 150 mT), two exposure durations (30 and 60 minutes), and three cold stress levels (10, 15, and 25°C) on the Hashemi rice cultivar, with three replications. Rice seeds were treated in plastic bags under the specified EMF conditions. For seedling establishment, healthy seedlings were transferred to plastic pots containing sand. After 25 days, physiological traits were measured.
Results: Analysis of variance revealed significant effects of EMF intensity, duration, cold stress, and their interactions on most traits. Cold stress significantly increased proline (1.02 µmol g¹ FW) and malondialdehyde (4.40 mmol g¹ FW) while reducing chlorophyll a and b. The highest germination percentage (98.9%), radicle length (69.6 mm), chlorophyll a (0.807 mg g¹ FW), and chlorophyll b (0.99 mg g¹ FW) were observed under 100 mT at 25°C. Additionally, the highest germination rate (0.560 day¹), shoot length (58.63 mm), seedling length (130.8 mm), radicle dry weight (3.25 mg), shoot dry weight (2.21 mg), seedling dry weight (5.46 mg), length-based vigor index (13035.5), and weight-based vigor index (543.5) were recorded at 100 mT, 25°C, and 30 minutes. While cold stress reduced germination and seedling growth, EMF treatment up to 100 mT counteracted these effects across all temperature levels.
Conclusion: EMF treatment up to 100 mT significantly improved germination traits (e.g., percentage, rate) and physiological parameters (e.g., chlorophyll content) in this rice cultivar. These findings highlight the potential of EMF priming to enhance seed germination and stress resilience under cold conditions.

Highlights:

  1. The effect of the magnetic field was investigated on rice seed germination and physiological traits under cold stress.
  2. Seed priming with an intensity of 100 mT for 60 minutes under cold stress of 10°C increased proline and malondialdehyde content.
  3. Higher EMF intensities (up to 100 mT) significantly improved germination at 10°C.
Full-Text [PDF 463 kb]   (33 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2025/02/7 | Revised: 2025/03/14 | Accepted: 2025/03/16 | ePublished: 2025/03/19

References
1. Abdul-Baki, A.A., and Anderson, J.D. 1973. Vigor determination in soybean seed by multiple criteria 1. Crop Science, 13(6): 630-633. [DOI:10.2135/cropsci1973.0011183X001300060013x]
2. Afzal, I., Saleem, S., Skalicky, M., Javed, T., Bakhtavar, M.A., ul Haq, Z., Kamran, M., Shahid, M., Sohail Saddiq, M., Afzal, A., Shafqat, N., Dessoky, E.S., Gupta, A., Korczyk-Szabo, J., Brestic, M., and Sabagh, A.E.L. 2021. Magnetic field treatments improves sunflower yield by inducing physiological and biochemical modulations in seeds. Molecules, 26(7): 1-14. [DOI:10.3390/molecules26072022] [PMID] []
3. Aghaee, A., Moradi, F., Zare-Maivan, H., Zarinkamar, F., Irandoost, H.P., and Sharifi, P. 2011. Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. African Journal of Biotechnology, 10(39): 7617-7621.
4. Akter, N., Biswas, P.S., Syed, M.A., Ivy, N.A., Alsuhaibani, A.M., Gaber, A., and Hossain, A. 2022. Phenotypic and molecular characterization of rice genotypes' tolerance to cold stress at the seedling stage. Sustainability, 14(9): 4871. [DOI:10.3390/su14094871]
5. Al-Allaf, S.J.A., and Al-Baker, R.A.H. 2022. Effectiveness of magnetic field in stimulation of biochemical and enzymes activities in seedling and callus of Nigella sativa. International Journal of Health Sciences, 6(S2): 3301-3314. [DOI:10.53730/ijhs.v6nS2.5818]
6. Alarcon, J.L.P., Cuesta, J.C., Molejon, M.R.B., Paragsa, J.D., and Ypon, N.M.Q. 2024. Investigating the influence of magnets in the growth of string bean (Phaseolus vulgaris) plant. American Journal of Life Science and Innovation, 3(1): 16-19. [DOI:10.54536/ajlsi.v3i1.2450]
7. Arnon, D.I. 1975. Copper enzymes in isolated chloroplasts; polyphenol-oxidase in Beta vulgaris. Plant Physiology, 24: 1-15. [DOI:10.1104/pp.24.1.1] [PMID] []
8. Bandumula, N. 2018. Rice Production in Asia: Key to Global Food Security. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88: 1323-1328. [DOI:10.1007/s40011-017-0867-7]
9. Bates, I., Waldern, R.P., and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
10. Belcher, E.W. 1995. The effect of seed condition and length of stratification on the germination of loblolly pine seed. Tree Planters' Notes, 46(4): 138-142.
11. Carbonell, M., Martínez, E., Florez, M., Maqueda, R., Pintor-Lopez, A., and Amaya, J. 2008. Magnetic field treatments improve germination and seedling growth in Festuca arundinacea Schreb. and Lolium perenne L. Seed Science and Technology, 36: 31-37. [DOI:10.15258/sst.2008.36.1.03]
12. Carbonell, M.V., Martinez, E., and Amaya, J.M. 2000. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro- and Magnetobiology, 19(1): 121-128. [DOI:10.1081/JBC-100100303]
13. Cong Dien, D., and Yamakawa, T. 2019. Phenotypic variation and selection for cold-tolerant rice (Oryza sativa L.) at germination and seedling stages. Agriculture, 9(8): 162. [DOI:10.3390/agriculture9080162]
14. De Freitas, G.M., Thomas, J., Liyanage, R., Lay, J.O., Basu, S., Ramegowda, V., do Amaral, M.N., Benitez, L.C., Bolacel Braga, E.J., and Pereira, A. 2019. Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS ONE, 14(6): e0218019. [DOI:10.1371/journal.pone.0218019] [PMID] []
15. FAO. 2010. Rice in the global economy: Strategic research and policy issues for food security.
16. FAO. 2022. FAOSTAT online database. Food and Agriculture Organization of the United Nations.
17. Faraz Ali, M., Sajid Aqeel Ahmad, M., Gaafar, A.-R.Z., and Shakoor, A. 2024. Seed pre-treatment with electromagnetic field (EMF) differentially enhances germination kinetics and seedling growth of maize (Zea mays L.). Journal of King Saud University - Science, 36(5): 103184. [DOI:10.1016/j.jksus.2024.103184]
18. Farooq, M.A., Niazi, A.K., Akhtar, J., Saifullah, Farooq, M., Souri, Z., Karimi, N., and Rengel, Z. 2019. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141: 353-369. [DOI:10.1016/j.plaphy.2019.04.039] [PMID]
19. Florez, M., Carbonell, M.V., and Martínez, E. 2007. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59(1): 68-75. [DOI:10.1016/j.envexpbot.2005.10.006]
20. Ghane, S.G., Lokhande, V.H., and Nikam, T.D. 2012. Differential growth, physiological and biochemical responses of Niger (Guizotia abyssinica Cass.) cultivars to water-deficit (drought) stress. Acta Physiologiae Plantarum, 34(1): 215-225. [DOI:10.1007/s11738-011-0820-y]
21. Hafeez, M.B., Zahra, N., Ahmad, N., Shi, Z., Raza, A., Wang, X., and Li, J. 2023. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biology, 25(1): 8-23. [DOI:10.1111/plb.13459] [PMID]
22. Hasan, M.M., Alharby, H.F., Uddin, M.N., Ali, M.A., Anwar, Y., Fang, X.-W., Hakeem, K.R., Alzahrani, Y., and Hajar, A.S. 2020. Magnetized water confers drought stress tolerance in Moringa biotype via modulation of growth, gas exchange, lipid peroxidation and antioxidant activity. Polish Journal of Environmental Studies, 29: 1625-1639. [DOI:10.15244/pjoes/110347]
23. Heath, R.L., and Packer, I. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198. [DOI:10.1016/0003-9861(68)90654-1] [PMID]
24. Ibrahim, S., El-Liethy, M.A., Elwakeel, K.Z., Hasan, M.A.E.-G., Al Zanaty, A.M., and Kamel, M.M. 2020. Role of identified bacterial consortium in treatment of Quhafa wastewater treatment plant influent in Fayuom, Egypt. Environmental Monitoring and Assessment, 192(3): 1-10. [DOI:10.1007/s10661-020-8105-9] [PMID]
25. ISTA. 1979. The germination test. International Seed Testing Association. Seed Science and Technology, 4: 23-28.
26. Janalizadeh Qazvini, M., Nizami, A., Khazaei, H., Faizi, H., and Guldani, M. 2015. Effect of magnetic fields on seed germination and seedling growth of sesame (Sesamum indicum L.). Iranian Journal of Seed Research, 3(1): 1-13. [In Persian] http://dx.doi.org/10.29252/yujs.3.1.1
27. Kataria, S., Baghel, L., and Guruprasad, K.N. 2017. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agricultural Biotechnology, 10: 83-90. [DOI:10.1016/j.bcab.2017.02.010]
28. Katsenios, N., Bilalis, D., Efthimiadou, A., Aivalakis, G., Nikolopoulou, A.-E., Karkanis, A., and Travlos, I. 2016. Role of pulsed electromagnetic field on enzyme activity, germination, plant growth and yield of durum wheat. Biocatalysis and Agricultural Biotechnology, 6: 152-158. [DOI:10.1016/j.bcab.2016.03.010]
29. Katsenios, N., Christopoulos, M.V., Kakabouki, I., Vlachakis, D., Kavvadias, V., and Efthimiadou, A. 2021. Effect of pulsed electromagnetic field on growth, physiology and postharvest quality of kale (Brassica oleracea), wheat (Triticum durum) and spinach (Spinacia oleracea) microgreens. Agronomy, 11(7): 1364. [DOI:10.3390/agronomy11071364]
30. Kaur, S., Vian, A., Chandel, S., Singh, H.P., Batish, D.R., and Kohli, R.K. 2021. Sensitivity of plants to high frequency electromagnetic radiation: cellular mechanisms and morphological changes. Reviews in Environmental Science and Bio/Technology, 20(1): 55-74. [DOI:10.1007/s11157-020-09563-9]
31. Kausar, A., and Ashraf, M. 2003. Alleviation of salt stress in pearl millet (Pennisetum glaucum L.) through seed treatments. Agronomie, 23(3): 227-234. [DOI:10.1051/agro:2002086]
32. Kumar, A., Singh, M., Singh, P.P., Singh, S.K., Singh, P.K., and Pandey, K.D. 2016. Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatalysis and Agricultural Biotechnology, 8: 1-7. [DOI:10.1016/j.bcab.2016.07.002]
33. Lone, J., Shikari, A., Sofi, N., Ganie, S., Sharma, M., Sharma, M., Kumar, M., Saleem, M.H., Almaary, K.S., Elshikh, M.S., Dwiningsih, Y., and Raza, M.A. 2022. Screening technique based on seed and early seedling parameters for cold tolerance of selected f2-derived f3 rice genotypes under controlled conditions. Sustainability, 14(14): 8447. [DOI:10.3390/su14148447]
34. Ma, Y., Dias, M.C., and Freitas, H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11: 591911. [DOI:10.3389/fpls.2020.591911] [PMID] []
35. Maguire, J.D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2): 176-177. [DOI:10.2135/cropsci1962.0011183X000200020033x]
36. Mahdavi, B., Modares Sanavi, S.A.M., and Balouchi, H.R. 2008. Effect of electromagnetic field on seed germination and seedling growth of annual medics, barley, dodder and barnyard grass. Iranian Journal of Biology, 21(3): 433-443. [In Persian]
37. Maleki Narg Mousa, M., Balouchi, H., and Attarzadeh, M. 2015. Effect of seed priming on some germination traits and seedling growth of safflower under drought stress. Iranian Journal of Seed Research, 2(1): 1-10. [In Persian] [DOI:10.29252/yujs.2.1.1]
38. Michel, B.E., and Kaufmann, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5): 914-916. [DOI:10.1104/pp.51.5.914] [PMID] []
39. Ministry of Agriculture-Jahad. 2019. Agricultural Statistics. Vol. 1. Crop Plants. Statistics, Information and Communication Technology Center, Ministry of Agriculture-Jahad, Tehran, Iran. [In Persian]
40. Mirmazloum, I., Kiss, A., Erdélyi, É., Ladányi, M., Németh, E.Z., and Radácsi, P. 2020. The effect of osmopriming on seed germination and early seedling characteristics of Carum carvi L. Agriculture, 10(4): 94. [DOI:10.3390/agriculture10040094]
41. Mohammadi, R., Roshandel, P., and Tadayon, A. 2019. The effects of magnetopriming on the growth, physiology and antioxidant systems in hyssop. Nova Biologica Reperta, 6(1): 106-115. [In Persian] [DOI:10.29252/nbr.6.1.106]
42. Mohidem, N.A., Hashim, N., Shamsudin, R., and Che Man, H. 2022. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6): 741. [DOI:10.3390/agriculture12060741]
43. Panuccio, M., Chaabani, S., Roula, R., and Muscolo, A. 2018. Bio-priming mitigates detrimental effects of salinity on maize improving antioxidant defense and preserving photosynthetic efficiency. Plant Physiology and Biochemistry, 132: 465-474. [DOI:10.1016/j.plaphy.2018.09.033] [PMID]
44. Radzevicius, A., Upadhyaya, S., and Zare, R. 2022. Pre-exposure impact of electromagnetic field radiation on carnation. Pakistan Journal of Botany, 54(1): 1-10.
45. Reddy, K.R., Seghal, A., Jumaa, S., Bheemanahalli, R., Kakar, N., Redoña, E.D., Wijewardana, C., Alsajri, F.A., Chastain, D., Gao, W., Taduri, S., and Lone, A.A. 2021. Morpho-physiological characterization of diverse rice genotypes for seedling stage high- and low-temperature tolerance. Agronomy, 11(1): 112. [DOI:10.3390/agronomy11010112]
46. Rehman, H.U., Basra, S., Ahmed, M., and Farooq, M. 2011. Field appraisal of seed priming to improve the growth, yield, and quality of direct seeded rice. Turkish Journal of Agriculture and Forestry, 35(4): 357-365. [DOI:10.3906/tar-1004-954]
47. Rifna, E.J., Ratish Ramanan, K., and Mahendran, R. 2019. Emerging technology applications for improving seed germination. Trends in Food Science and Technology, 86: 95-108. [DOI:10.1016/j.tifs.2019.02.029]
48. Sarı, M.E., Demir, İ., Yıldırım, K., and Memiş, N. 2023. Magnetopriming enhance germination and seedling growth parameters of onion and lettuce seeds. International Journal of Agriculture Environment and Food Sciences, 7(3): 468-475. [DOI:10.31015/jaefs.2023.3.1]
49. Sarraf, M., Deamici, K.M., Taimourya, H., Islam, M., Kataria, S., Raipuria, R.K., Abdi, G., and Brestic, M. 2021. Effect of magnetopriming on photosynthetic performance of plants. International Journal of Molecular Sciences, 22: 9353. [DOI:10.3390/ijms22179353] [PMID] []
50. Shabrangy, A. 2024. Using magnetic fields to enhance the seed germination, growth, and yield of plants. In: Maghuly, F (Eds), Plant functional genomics: Methods and Protocols, 2: 375-395. Springer US. [DOI:10.1007/978-1-0716-3782-1_22] [PMID]
51. Sharma, H.S., Fleming, C., Selby, C., Rao, J., and Martin, T. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26: 465-490. [DOI:10.1007/s10811-013-0101-9]
52. Singh, N., Singh, R., Meena, V., and Meena, R. 2015. Can we use maize (Zea mays) rhizobacteria as plant growth promoter. Vegetos, 28(1): 86-99. [DOI:10.5958/2229-4473.2015.00012.9]
53. Soran, M.-L., Stan, M., Niinemets, Ü., and Copolovici, L. 2014. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. Journal of Plant Physiology, 171(15): 1436-1443. [DOI:10.1016/j.jplph.2014.06.013] [PMID] []
54. Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A.A., Ihsan, M., Laiq, M., Ullah, S., and Fahad, S. 2019. Drought tolerance improvement in plants: an endophytic bacterial approach. Applied Microbiology and Biotechnology, 103: 7385-7397. [DOI:10.1007/s00253-019-10045-4] [PMID]
55. Vasiqeh Shamsabadi, A., Modarres Sanavy, S.A.M., Modarres Vamghi, S.M., and Keshavarz, H. 2017. Effect of magnetic field on some physiological traits and germination of safflower crop seeds and four important weed species. Plant Research (Biology of Iran), 31(1): 184-196. [In Persian]
56. Xiao, N., Gao, Y., Qian, H., Gao, Q., Wu, Y., Zhang, D., Zhang, X., Yu, L., Li, Y., and Pan, C. 2018. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiology, 177(3): 1108-1123. [DOI:10.1104/pp.18.00209] [PMID] []
57. Yongbin, Q., Summat, P., Panyawut, N., Sikaewtung, K., Ditthab, K., Tongmark, K., Chakhonkaen, S., Sangarwut, N., Wasinanon, T., Kaewmungkun, K., and Muangprom, A. 2023. Identification of rice accessions having cold tolerance at the seedling stage and development of novel genotypic assays for predicting cold tolerance. Plants, 12(1): 215. [DOI:10.3390/plants12010215] [PMID] []
58. Zafar, S., and Jianlong, X. 2023. Recent advances to enhance nutritional quality of rice. Rice Science, 30(6): 523-536. [DOI:10.1016/j.rsci.2023.05.004]
59. Zhang, Q., Chen, Q., Wang, S., Hong, Y., and Wang, Z. 2014. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice, 7: 1-12. [DOI:10.1186/s12284-014-0024-3] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.