(Spring and Summer)                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


University of Mohaghegh Ardabili , t.saadat2020@gmail.com
Abstract:   (89 Views)

Objective: This study aimed to evaluate the effect of chitosan on germination indicators and the activity of antioxidant enzymes in safflower seedlings under salinity stress.
Method: The experiment was conducted using a factorial arrangement based on a completely randomized design with three replications at the University of Mohaghegh Ardabili in 2024. The experimental treatments included four salinity levels (0, 50, 100, and 150 mM NaCl) and four concentrations of chitosan (0, 0.2, 0.4, and 0.5% w/v), which were dissolved in 1% acetic acid.
Results: The results showed that salinity stress reduced the germination rate, radicle length, plumule length, seedling length, seedling fresh weight, and seedling dry weight. However, priming with different concentrations of chitosan, especially at 0.5%, improved these traits. The highest daily germination rate (0.114) was observed in the control group (distilled water priming) under 150 mM salinity. The activity of catalase and peroxidase enzymes in the control under 150 mM salinity increased by approximately 43% and 70%, respectively, compared to the 0.5% chitosan treatment under non-saline conditions. Similarly, the activity of superoxide dismutase enzyme in the 0.5% chitosan treatment under 150 mM salinity increased by about 67% compared to the control under non-saline conditions. Furthermore, the ascorbate peroxidase enzyme activity in seeds primed with 0.5% chitosan increased by 37% compared to the control (distilled water priming).
Conclusions: The results indicated that seed treatment with different concentrations of chitosan can mitigate the harmful effects of salinity on some traits of safflower seedlings and improve seedling growth. The best results were achieved when 0.5% chitosan was used under salinity conditions.

Highlights

  • Safflower seed priming using 0.5% chitosan improved the germination indices of safflower seeds under salinity stress.
  • Safflower seed priming with 0.5% chitosan increased the activity of the superoxide dismutase and ascorbate peroxidase enzymes.
  • Priming with chitosan had a better effect on the germination indices and biochemical characteristics of safflower seeds compared to the control.
Full-Text [PDF 520 kb]   (31 Downloads)    
Type of Study: Research | Subject: General
Received: 2025/02/16 | Revised: 2025/04/18 | Accepted: 2025/05/26

References
1. Abdiazar, N., Zahedi, H., Sharghi, Y., Seyed, A. M., Sanavy, M., & Alipour, A. (2024). Enhancing safflower seedlings' tolerance to osmotic stress through seed priming with glutathione, epibrassinolide, chitosan, and folic acid. Egyptian Journal of Agricultural Research, 102(2), 208-216. [DOI:10.21608/EJAR.2024.271848.1518]
2. Adhikari, B., Olorunwa, O. J., & Barickman, T. C. (2022). Seed priming enhances seed germination and morphological traits of Lactuca sativa L. under salt stress. Seeds, 1(1), 74-86. [DOI:10.3390/seeds1010007]
3. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. [DOI:10.1016/S0076-6879(84)05016-3] [PMID]
4. Ahmadvand, B., Sharifzadeh, F., & Mirabzadeh Ardakani, M. (2023). The effect of hydro and osmo priming treatments on germination traits enhancement of Sesamum indicum L var. shevin seeds under drought stress. Iranian Journal of Seed Science & Technology, 11(4), 1-16. [In Persian] [DOI:10.22092/ijsst.2022.359726.1446]
5. Akhondi, M., Niakan, M., Mahmoodzadeh, H., & Dashti, M. (2020). Effect of zinc nano-oxide on germination indices and some mineral elements of (Salvia leriifolia Benth.) under saline stress conditions. Journal of Medicinal and Spice Plants, 24(1), 19-27.
6. Azami, K., Hayashi, T., Kusumi, T., Ohmori, K., & Suzuki, K. (2019). Total synthesis of carthamin, a traditional natural red pigment. Angewandte Chemie International Edition, 58(16), 5321-5326. [DOI:10.1002/anie.201814061] [PMID]
7. Bahrasemani, S., Seyedi, A., Fathi, S. H., & Jowkar, M. (2023). The seed priming using putrescine improves germination indices and seedlings morphobiochemical responses of indigo (Indigofera tinctoria) under salinity stress. Journal of Medicinal Plants and By-products, 13(1), 179-188. [DOI:10.22034/jmpb.2023.128870]
8. Bailly, C., Benamar, A., Corbineau, F., & Côme, D. (2000). Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research, 10(1), 35-42. [DOI:10.1017/S0960258500000046]
9. Banerjee, A., & Roychoudhury, A. (2018). Seed priming technology in the amelioration of salinity stress in plants. In A. Rakshit & H. B. Singh (Eds.), Advances in seed priming (pp. 81-93). Springer. [DOI:10.1007/978-981-13-0032-5_5] []
10. Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of development, germination and dormancy (3rd ed.). Springer Science & Business Media. [DOI:10.1007/978-1-4614-4693-4]
11. Biosci, I. J., Khan, M. O., Khan, M. J., Khan, M. A., Shafi, M., & Anwar, S. (2019). Wheat yield as affected by sources of sulfur and its time of application. International Journal of Biosciences, 15(6), 37-50. [DOI:10.12692/ijb/15.6.37-50]
12. Chapman, M. A., & Burke, J. M. (2007). DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biology, 7, 60. [DOI:10.1186/1471-2229-7-60] [PMID] []
13. Devika, O. S., Singh, S., Sarkar, D., Barnwal, Suman, A., & Rakshit. (2021). Seed priming: A potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems, 5, 654001. [DOI:10.3389/fsufs.2021.654001]
14. Ebrahimi, O., Esmaili, M. M., Sabori, H., & Tahmasebi, A. (2013). Effects of salinity and drought stress on germination of two species of (Agropyron elongatum, Agropyron desertrum). Desert Ecosystem Engineering Journal, 1(1), 31-38. [In Persian]
15. Ellis, R. H., & Roberts, E. H. (1980). Seed physiology and seed quality in soybean. In R. J. Summerfield & A. H. Bunting (Eds.), Advances in legume science (pp. 287-311). Royal Botanic Gardens.
16. Elouaer, M. A., & Hannachi, C. (2012). Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. Eurasian Journal of Biosciences, 6, 76-84. [DOI:10.5053/ejobios.2012.6.0.9]
17. Fan, K., Qin, Y., Hu, X., Xu, J., Ye, Q., Zhang, C., Ding, Y., Li, G., Chen, Y., & Liu, J. (2023). Identification of genes associated with fatty acid biosynthesis based on 214 safflower core germplasm. BMC Genomics, 24, 763. [DOI:10.1186/s12864-023-09863-8] [PMID] []
18. Farooq, M., Basra, S. M. A., Rehman, H., & Saleem, B. A. (2007). Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. Journal of Agronomy and Crop Science, 194(1), 55-60. [DOI:10.1111/j.1439-037X.2007.00287.x]
19. Food and Agriculture Organization of the United Nations. (2024). FAOSTAT online database. Retrieved December 28, 2024, from http://www.fao.org/faostat/en/#home
20. Ghassemi-Golezani, K., Mousavi, S. A., & Farhangi-Abriz, S. (2024). Enriched biochars with silicon and calcium nanoparticles mitigated salt toxicity and improved safflower plant performance. International Journal of Phytoremediation, 26(8), 1359-1368. [DOI:10.1080/15226514.2023.2259980] [PMID]
21. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314. [DOI:10.1104/pp.59.2.309] [PMID] []
22. Gürsoy, M. (2023). Morphological and biochemical changes with hormone and hydro-priming applications in safflower (Carthamus tinctorius L.) seedlings under salinity stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13282. [DOI:10.15835/nbha51313282]
23. Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55(1), 184-185. [DOI:10.1111/j.1365-2621.1990.tb06048.x]
24. Hiremath, U., Priyanka, M., Hosamani, A., Shivakumar, G., Bagli, B., & Doddagoudar, S. R. (2024). Response of seed priming to varied levels of salinity in safflower. Journal of Advances in Biology & Biotechnology, 27(12), 462-475. [DOI:10.9734/jabb/2024/v27i121505]
25. Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. [DOI:10.1016/j.jplph.2015.12.011] [PMID]
26. Imran, S., Sarker, P., Hoque, N., Chandra Paul, N., Mahamud, A., Chakrobortty, J., Arif, T., Latef, A. A. H. A., Hasanuzzaman, M., & Saidur Rahaman, M. (2022). Biochar actions for the mitigation of plant abiotic stress. Crop and Pasture Science, 74(2), 1-21. [DOI:10.1071/CP21486]
27. Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 10, 80. [DOI:10.3389/fpls.2019.00080] [PMID] []
28. Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 35, 1381-1396. [DOI:10.1007/s11738-012-1186-5]
29. Jovanović, S., Kukavica, B., Vidović, M., Morina, F., & Menckhoff, L. (2018). Class III peroxidases: Functions, localization and redox regulation of isoenzymes. In D. K. Gupta & J. M. Palma (Eds.), Antioxidants and antioxidant enzymes in higher plants (pp. 269-300). Springer. [DOI:10.1007/978-3-319-75088-0_13]
30. Khan, M. K., Babar, S. F., Oryani, B., Dagar, V., Rehman, A., & Zakari, A. (2022). Role of financial development, environmental-related technologies, research and development, energy intensity, natural resource depletion, and temperature in sustainable environment in Canada. Environmental Science and Pollution Research, 29(1), 622-638. [DOI:10.1007/s11356-021-15421-0] [PMID]
31. Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177. [DOI:10.2135/cropsci1962.0011183X000200020033x]
32. Mansouri, A., Ahmadi, A., & Omidi, H. (2016). The effect of chitosan and iron oxide nanoparticles on germination and early growth indicators of safflower (Carthamus tinctorius L.) under salinity stress conditions. Seed Research, 7(3), 72-80. [In Persian]
33. Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: A feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21(21), 8258. [DOI:10.3390/ijms21218258] [PMID] []
34. Meftahizade, H., & Rahmati, Z. (2021). Evaluation of germination and growth characteristics of guar (Cyamopsis tetragonoloba L.) genotypes under salinity stress condition. Iranian Journal of Seed Science and Technology, 10(2), 97-109. [In Persian] [DOI:10.22092/ijsst.2020.342298.1332]
35. Ministry of Agriculture Jihad. (2022). Agricultural statistics (Vol. 1: Crops). Vice President of Statistics, Information and Communication Technology Center. [In Persian]
36. Mustafa, G., Akhtar, M. S., & Abdullah, R. (2019). Global concern for salinity on various agro-ecosystems. In M. S. Akhtar (Ed.), Salt stress, microbes, and plant interactions: Causes and solution (Vol. 1, pp. 1-19). Springer. [DOI:10.1007/978-981-13-8801-9_1] []
37. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. [DOI:10.1093/oxfordjournals.pcp.a076232]
38. Naseer, M. N., Rahman, F. U., Hussain, Z., Khan, I. A., Aslam, M. M., Aslam, A., Waheed, H., Khan, A. U., & Iqbal, S. (2022). Effect of salinity stress on germination, seedling growth, mineral uptake and chlorophyll contents of three Cucurbitaceae species. Brazilian Archives of Biology and Technology, 65, e22210165. [DOI:10.1590/1678-4324-2022210165]
39. Nawaz, M., Hassan, M. U., Chattha, M. U., Mahmood, A., Shah, A. N., Hashem, M., Alamri, S., Batool, M., Rasheed, A., Thabit, M. A., Alhaithloul, H. A. S., & Qari, S. H. (2022). Trehalose: A promising osmo-protectant against salinity stress-physiological and molecular mechanisms and future prospective. Molecular Biology Reports, 49(12), 11255-11271. [DOI:10.1007/s11033-022-07681-x] [PMID]
40. Omidi, H., Sorushzadeh, A., Salehi, A., & Ghezeli, F. (2005). Evaluation of priming pretreatments on germination rapeseed. Agricultural Science & Technology, 19(2), 1-10.
41. Panahi, M., Akbari, G. A., Roustakhiz, J., & Golbashi, M. (2012). Response of safflower genotypes (Carthamus tinctorius L.) to salinity stress via germination and early seedling growth. Iranian Journal of Science and Technology, 12, 211-222. [In Persian]
42. Rewald, B., Shelef, O., Ephrath, J. E., & Rachmilevitch, S. (2013). Adaptive plasticity of salt-stressed root systems. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 495-510). Springer. [DOI:10.1007/978-1-4614-4747-4_19]
43. Rhaman, M. S., Rauf, F., Tania, S. S., & Khatun, M. (2020). Seed priming methods: Application in field crops and future perspectives. Asian Journal of Research in Crop Science, 5(2), 8-19. [DOI:10.9734/ajrcs/2020/v5i230066]
44. Saadat, H., & Sedghi, M. (2024). The effect of seed priming with chitosan on the improvement of physiological and biochemical traits of soybean (Glycine max (L.) Merrill) under salinity stress. Russian Journal of Plant Physiology, 71, 187. [DOI:10.1134/S102144372460454X]
45. Saadat, H., Sedghi, M., Seyed Sharifi, R., & Farzaneh, S. (2023a). Expression of gibberellin synthesis genes and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iranian Journal of Plant Physiology, 13(4), 4715-4728. [In Persian]
46. Saadat, H., Soltani, E., & Sedghi, M. (2023b). The effect of seed priming with chitosan on germination characteristics and activity of antioxidant enzymes in rice seedlings (Oryza sativa L.) under salinity stress. Plant Process and Function, 12(54), 239-258. [In Persian]
47. Saadat, T., Sedghi, M., Seyed Sharifi, R., & Farzaneh, S. (2023c). Effect of chitosan on germination indices of common bean (Phaseolus vulgaris) (cv. Sedri) seeds under salt stress. Iranian Journal of Seed Research, 9(2), 151-162. [In Persian] [DOI:10.61186/yujs.9.2.151]
48. Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
49. Shah, B. R., Li, Y., Jin, W., An, Y., He, L., Li, Z., Xu, W., & Li, B. (2016). Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocolloids, 52, 369-377. [DOI:10.1016/j.foodhyd.2015.07.015]
50. Shahbazi, E., & Golkar, P. (2016). Effects of salt stress on antioxidants activity and seedling traits of safflower (Carthamus tinctorius L.) genotypes. Plant Process and Function, 4(14), 93-104. [In Persian]
51. Soltani, A., Robertson, M. J., Torabi, B., Yousefi-Daz, M., & Sarparast, R. (2006). Modeling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1-4), 156-167. [DOI:10.1016/j.agrformet.2006.04.004]
52. Tao, Q., Lv, Y., Mo, Q., Bai, M., Han, Y., & Wang, Y. (2018). Impacts of priming on seed germination and seedling emergence of Cleistogenes songorica under drought stress. Seed Science & Technology, 46(2), 239-258. [DOI:10.15258/sst.2018.46.2.06]
53. Thabet, S. G., & Alqudah, A. M. (2023). New genetic insights into improving barley cope with salt stress via regulating mineral accumulation, cellular ion homeostasis, and membrane trafficking. Environmental and Experimental Botany, 208, 105252. [DOI:10.1016/j.envexpbot.2023.105252]
54. Wahid, A., Noreen, A., Basra, S. M. A., Gelani, S., & Farooq, M. (2008). Priming-induced metabolic changes in sunflower (Helianthus annuus) achenes improve germination and seedling growth. Botanical Studies, 49(2), 343-350.
55. Xu, J., Lan, W., Ren, C., Zhou, X., Wang, S., & Yuan, J. (2021). Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization. Cold Regions Science and Technology, 189, 103335. [DOI:10.1016/j.coldregions.2021.103335]
56. Zhang, F., Yu, J., Johnston, C. R., Wang, Y., Zhu, K., Lu, F., Zhang, Z., & Zou, J. (2015). Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLOS ONE, 10(10), e0140620. [DOI:10.1371/journal.pone.0140620] [PMID] []
57. Zulfiqar, F. (2021). Effect of seed priming on horticultural crops. Scientia Horticulturae, 286, 110197. [DOI:10.1016/j.scienta.2021.110197]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.