Volume 3, Issue 2 ((Autumn & Winter) 2017)                   Iranian J. Seed Res. 2017, 3(2): 41-55 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ranjbar G, Ghadiri H. (2017). Quantification of Seedling Emergence of Kochia (Kochia indica) Affected by Temperature, Salinity and Seeding Depth. Iranian J. Seed Res.. 3(2), 41-55. doi:10.29252/yujs.3.2.41
URL: http://yujs.yu.ac.ir/jisr/article-1-147-en.html
, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran , ranjbar71@gmail.com
Abstract:   (18150 Views)

A controlled experiment was run to quantify emergence of Kochia indica under different temperature, salinity and seeding depth levels at Yazd National Salinity Research Center in 2013. Treatments were five day/night temperature regimes: 20/10, 25/15, 30/20, 35/25 and 40/30 °C, five salinity levels: 2, 6, 10, 14 and 18 dS m-1, and seeding depth on the surface (0 mm), 5, 10 and 15 mm. Final emergence percentage, emergence rate index and elapsed time (days) to reach 50% of the maximum emergence were measured. The results showed that the highest and lowest final emergence percentages were observed at 25/15°C and 40/30°C day/night, respectively. Final emergence percentages at salinity levels of 6, 10, 14 and 18 dS m-1were, respectively, 9, 22, 36 and 57% lower than 2 dS m-1. Final emergence percentages for 5, 10 and 15 mm seeding depths were, respectively, 30, 44 and 72% lower, as compared with the placement of seeds on the soil surface. Regression analysis showed that final emergence percentage linearly decreased with increase in salinity and seeding depth levels. However, elapsed time (days) to reach 50% of the maximum emergence (T50), increased as salinity and seeding depth increased, so that the highest T50 was obtained for 18 dS m-1 and seeding depth of 15 mm. Increase in salinity and seeding depth was associated with a significant decrease in emergence rate index. In addition, using a logistic regression equation, emergence rate of K. indica was quantified on each day after sowing for each temperature-salinity combination to predict the distribution range of the plant in these situations.
 

Full-Text [PDF 583 kb]   (2999 Downloads)    
Type of Study: Research | Subject: Seed Ecology
Received: 2015/09/21 | Revised: 2017/12/28 | Accepted: 2016/06/26 | ePublished: 2017/05/13

References
1. Al-Ahmadi, M., and Kafi, M. 2007. Cardinal temperatures for germination of Kochia scoparia (L.). Journal of Arid Environment, 68(2): 308-314. [DOI:10.1016/j.jaridenv.2006.05.006]
2. Andrews, M., Scott, W.A., and Mckenzie, B.A. 1991. Nitrate effects on pre-emergence growth and emergence percentage of wheat (Triticum aestivum L.) from different sowing depths. Journal of Experimental Botany, 42(11): 1449-1454. [DOI:10.1093/jxb/42.11.1449]
3. Benvenuti, S., and Macchia, M. 1997. Germination ecophysiology of bur beggarticks (Bidens tripartita) as affected by light and oxygen. Weed Science, 45(5): 696-700.
4. Benvenuti, S., Macchia, M., and Miele, S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science, 49(4): 528-535. [DOI:10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2]
5. Blackshaw, R.E., Brandt, R.N., and Entz, T. 2002. Soil temperature and soil water effects on henbit emergence. Weed Science, 50(4): 494-497. [DOI:10.1614/0043-1745(2002)050[0494:STASWE]2.0.CO;2]
6. Boyd, N., and Van Acker, R.C. 2003. The effects of depth and fluctuating soil moisture on the emergence of eight annual and six perennial plant species. Weed Science, 51(5): 725-730. [DOI:10.1614/P2002-111]
7. Chachalis, D., and Reddy, K.N. 2000. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Science, 48(2): 212-216. [DOI:10.1614/0043-1745(2000)048[0212:FACRSG]2.0.CO;2]
8. Coolbear, P. 1980. Osmotic pre-sowing treatments and nucleic acid accumulation in tomato seeds (Lycopersicon lycopersicum). Seed Science and Technology, 8: 289-303.
9. Cousens, R., and Moss, S.R. 1990. A model of the effects of cultivation on the vertical distribution of weed seeds within the soil. Weed Research, 30(1): 61-70. [DOI:10.1111/j.1365-3180.1990.tb01688.x]
10. DiTommaso, A. 2004. Germination behavior of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Science, 52(6): 1002-1009. [DOI:10.1614/WS-04-030R1]
11. Dyer, W., Chee, P., and Fay, P. 1993. Rapid germination of sulfonylurea-resistant (Kochia scoparia) accessions is associated with elevated seed levels of branched chain amino acids. Weed Science, 41(1): 18-22.
12. Everitt, J.H., Ala, M.A., and Lee, J.B. 1983. Seed germination characteristics of (Kochia scoparia). Journal of Range Management, 36(5): 662-664. https://doi.org/10.2307/3898365 [DOI:10.2307/3898360]
13. Evetts, L.L., and Burnside, O.C. 1972. Germination and seedling development of common milkweed and other species. Weed Science, 20: 371-378.
14. Forcella, F., Wilson, R., Dekker, J., Kremer, R., Cardina, J., Anderson, R., Alm, D., Renner, K., Harvey, R., Clay, S., and Buhler, D. 1997. Weed seed bank emergence across the Corn Belt. Weed Science, 45(1): 67-76.
15. Friesen, L.F., Beckie, H.J., Warwick, S.I., and Van Acker, R.C. 2009. The biology of Canadian weeds. 138. Ochia scoparia (L.) Schrad. Canadian Journal of Plant Science, 89(1): 141-167. [DOI:10.4141/CJPS08057]
16. Greipsson, S., and Davy, A.J. 1994. Germination of Leymus arenarius and its significance for land reclamation in Iceland. Annals of Botany, 73(4): 393-401. [DOI:10.1006/anbo.1994.1049]
17. Grundy, A.C., Mead, A., and Bond, W. 1996. Modeling the effect of weed-seed distribution in the soil profile on seedling emergence. Weed Research, 36(5): 375-384. [DOI:10.1111/j.1365-3180.1996.tb01667.x]
18. Guo, P., Al-Khatib, K. 2003. Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Science, 51(6): 869-875. [DOI:10.1614/P2002-127]
19. Hadas, A. 1977. Water uptake and germination of leguminous seeds in soils of changing matric and osmotic water potential. Journal of Experimental Botany, 28(105): 977-985. [DOI:10.1093/jxb/28.4.977]
20. Kader, M.A. 2005. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceeding of the Royal Society of New South Wales, 138: 65-75.
21. Khan, M.A, Gul, B., and Weber, D.J. 2001. Influence of salinity and temperature on the germination of Kochia scoparia. Wetlands Ecology and Management, 9(6): 483-489. https://doi.org/10.1023/A:1012211726748 [DOI:10.1023/A:1012232728565]
22. Kiang, Y.T. 1982. Local differentiation of Anthoxanthum odoratum L. populations on roadsides. American Midland Naturalist, 107(2): 340-350. [DOI:10.2307/2425384]
23. Liebman, M., Mohler, C.L., and Staver, C.P. 2001. Ecological management of agricultural weeds. Cambridg University Press. 531p. [DOI:10.1017/CBO9780511541810] [PMCID]
24. Maas, E.V., and Grattan, S.R. 1999. Crop yield as affected by salinity. In Skaggs, R.W., and Van Schilfgaarde, J. (ed.). Agricultural Drainage. Madison, USA. 55-108.
25. Marlis, H., and Ungar, I.A. 1990. The effect of salinity on seed germination and seedling growth of Echinochloa crusgalli. The Ohio Journal of Science, 90(1): 13-15.
26. Mickelson, J.A., Bussan, A.J., Davis, E.S., Hulting, A.G., and Dyer, W.E. 2004. Postharvest kochia (Kochia scoparia) management with herbicides in small grains. Weed Technology, 18(2): 426-431. [DOI:10.1614/WT-03-164R1]
27. Mohler, C.L., and Galford, A.E. 1997. Weed seedling emergence and seed survival: separating the effects of seed position and soil modification by tillage. Weed Research, 37(3): 147-155. [DOI:10.1046/j.1365-3180.1997.d01-21.x]
28. Mulugeta, D. 1991. Management, inheritance, and gene flow resistance to chlorsulfuron in Kochia scoparia L. (Schrad). (Doctoral dissertation, Montana State University-Bozeman, College of Agriculture). 147 p.
29. Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. [DOI:10.1146/annurev.arplant.59.032607.092911] [PMID]
30. Naidoo, G., and Naicker, K. 1992. Seed germination in the coastal halophytes Triglochin bulbosa and Triglochin striata. Aquatic Botany, 42(3): 217-229. [DOI:10.1016/0304-3770(92)90023-C]
31. Nussbaum, E., Wiese, A., Crutchfield, D., Chenault, E., and Lavake, D. 1985. The effect of temperature and rainfall on emergence and growth of eight weeds. Weed Science, 33(2): 165-170.
32. Penfield, S. 2008. Temperature perception and signal transduction in plants. Tansley Review of New Phytology, 179(3): 615-628. [DOI:10.1111/j.1469-8137.2008.02478.x] [PMID]
33. Radosevich, S.R., Holt, J.S., and Ghersa, C. 1997. Weed ecology: implications for management. John Wiley and Sons Press, New York, USA. 589p.
34. Ranjbar, G.H., Ghadiri, H., and Sepaskhah, A.R. 2014. Effects of irrigation water salinity and Kochia indica density on sorghum and K. indica dry matter and chemical composition. Journal of Biological and Environmental Sciences, 8: 115-123.
35. Schwinghamer, T.D., Van Acker, R.C. 2008. Emergence timing and persistence of kochia (Kochia scoparia). Weed Science, 56(1): 37-41. [DOI:10.1614/WS-07-098.1]
36. Sharma, M.L. 1976. Interaction of water potential and temperature effects on germination of three semi-arid plant species. Agronomy Journal, 68(2): 390-394. [DOI:10.2134/agronj1976.00021962006800020048x]
37. Steckel, L.E., Sprague, C.L., Stoller, E.W., and Wax, L.M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Science, 52(2): 217-221. [DOI:10.1614/WS-03-012R]
38. Steppuhn, H., and Wall, K. 1993. Kochia scoparia emergence from saline soil under various water regimes. Journal of Range Management, 46(6): 533-538. [DOI:10.2307/4002867]
39. Tadmor, N.H., Cohen, Y., and Harpaz, Y. 1969. Interactive effects of temperature and osmotic potential on the germination of range plants. Crop Science, 9(6): 771-774. [DOI:10.2135/cropsci1969.0011183X000900060030x]
40. Thomas, W.E., Burke, I.C., Spears, J.F., and Wilcut, J.W. 2006. Influence of environmental factors on slender amaranth (Amaranthus viridis) germination. Weed Science, 54(2): 316-320. [DOI:10.1614/WS-05-54.2.316]
41. Thompson, C., Thill, D., and Shafi, B. 1994. Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Science, 42(1): 50-56.
42. Thornley, J.H.N., and Johnson, I.R. 1990. Plant and crop modeling: a mathematical approach to plant and crop physiology. Oxford Press. New York, USA. 669 p. [PMCID]
43. Tobe, K., Zhang, L., and Omasa, K.I. 2005. Seed germination and seedling emergence of three annuals growing on Desert Sand Dunes in China. Annals of Botany, 95(4): 649-659. [DOI:10.1093/aob/mci060] [PMID] [PMCID]
44. Wang, Z.L., Wang, G., and Liu, X.M. 1998. Germination strategy of the temperate sandy desert annual chenopod Agriophyllum squarrosum. Journal of Arid Environments, 40(1): 69-76. [DOI:10.1006/jare.1998.0422]
45. Watkinson, A.R. 1978. The demography of a sand dune annual: Vulpia fasciculata. II. The dynamics of seed populations. Journal of Ecology, 66(1): 35-44. https://doi.org/10.2307/2259179 [DOI:10.2307/2259178]
46. Yenish, J.P., Fry, T.A., Durgan, B.R., and Wyse, D.L. 1996. Tillage effects on seed distribution and common milkweed (Asclepias syriaca) establishment. Weed Science, 44(4): 815-820.
47. Zia, S., and Khan, M.A. 2004. Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Canadian Journal of Botany, 82(2): 151-157. [DOI:10.1139/b03-118]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.