Volume 7, Issue 1 (3-2018)                   Plant Pathol. Sci. 2018, 7(1): 63-72 | Back to browse issues page


XML Persian Abstract Print


Department of Horticulture, Sari Agricultural Sciences and Natural Resources University, Sari, Iran , kamranghasemi63@gmail.com
Abstract:   (10728 Views)

Ghasemi K. 2018. Sulfur role in plant diseases management. Plant Pathology Science 7(1):63-72.

Sulfur (S), as a promoter of plant defense system and fungicidal effect, can have a critical role in organic farming. Presence of sulfuric defense compounds including elemental sulfur, H2S, glutathione, اسیدیتهytochelatins, secondary metabolites and S-rich proteins are vital under stress conditions. As a soil disinfectant, carbon disulfide is widely used against soil-borne pathogens. This is used for controlling the root and crown rot disease caused by Armillaria. Sulfur fumigation is used against powdery mildew in greenhouse production. Fumigation and application of sulfur pad are methods for controlling the grape and some other fruits rot in storage. Besides, sulfur is effective in control of mites, psyllids, and thrips.

Full-Text [PDF 207 kb]   (2262 Downloads)    
Type of Study: Extentional | Subject: Special
Received: 2016/11/8 | Accepted: 2017/04/26

References
1. Ahuja I., Kissen R. and Bones A. M. 2012. اسیدیتهytoalexins in defense against pathogens. Trends in Plant Science 17:73-90. [DOI:10.1016/j.tplants.2011.11.002]
2. Beckerman J. 2016. Disease Management Strategies: Using Organic Fungicides. Disease Management Strategies series Purdue University. BP-69-W., https://www.extension.purdue.edu/extmedia/bp/bp-69-w.pdf
3. Bourbos V. A., Skoudridakis M. T., Barbopoulou E. and Venetis K. 2000. Ecological control of grape powdery mildew (Uncinula necator). Http://www.landwirtschaft-mlr.baden wuerttemberg.de/servlet/PB/menu/1043197/index.html
4. Burandt P., Papenbrock J., Schmidt A., Bloem E., Haneklaus S. and Schnug E. 2001. Genotypical differences in total sulfur contents and cysteine desulfhydrase activities in Brassica napus L. Phyton-Horn 41:75-86.
5. Crisosto C. H. 2008. Grapes, Fumigation with Sulfur Dioxide (SO2). WFLO Commodity Storage Manual. http://ucanr.edu/datastoreFiles/234-2689.pdf
6. Franck J., Latorre B. A., Torres R. and Zoffoli J. P. 2005. The effect of preharvest fungicide and postharvest sulfur dioxide use on postharvest decay of table grapes caused by Penicillium expansum. Postharvest Biology and Technology 37: 20-30. [DOI:10.1016/j.postharvbio.2005.02.011]
7. Haneklaus S., Bloem E. and Schnug E. 2007. Sulfur interactions in crop ecosystems. pp. 17-58. In: M. J. Hawkesford, L. J. De Kok (ed.). Sulfur in Plants an Ecological Perspective. Springer, Germany [DOI:10.1007/978-1-4020-5887-5_2]
8. Klikocka H., Haneklaus S., Bloem E. and Schnug E. 2005. Influence of sulfur fertilization on infection of potato tubers with Rhizoctonia solani and Streptomyces scabies. Journal of Plant Nutrition 28:819-833. [DOI:10.1081/PLN-200055547]
9. Kruse C., Jost R., Lipschis M., Kopp B., Hartmann M. and Hell R. 2007. Sulfur enhanced defense: effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biology 9:608-619. [DOI:10.1055/s-2007-965432]
10. Monde K. and Takasugi M. 1992. High-performance liquid chromatographic analysis of cruciferous phytoalexins using complex ternary mobile phase gradients. Journal of Chromatography 598:147-152. [DOI:10.1016/0021-9673(92)85126-E]
11. Rausch T. and Wachter A. 2005. Sulfur metabolism: a versatile platform for launching defense operations. Trends in Plant Science 10:503-509. [DOI:10.1016/j.tplants.2005.08.006]
12. Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., Suzuki H., Hirai M. Y., Noji M., Saito K., Masuda T., Takamiya K. I., Shibata D. and Ohta H. 2005. Coordinated activation of metabolic pathways for antioxidants and defense compounds by jasmonates and their roles in stress tolerance in Arabidopsis. The Plant Journal 44:653-668. [DOI:10.1111/j.1365-313X.2005.02560.x]
13. Schnug E., Haneklaus S., Booth E. and Walker K. C. 1995. Sulphur supply and stress resistance in oilseed rape. In 9th International Rapeseed Congress, Cambridge,UK, 229-231.
14. Smith B., Randle D., Mezencev R., Thomas L., Hinton C. and Odero-Marah V. 2014. Camalexin-induced apoptosis in prostate cancer cells involves alterations of expression and activity of lysosomal protease cathepsin D. Molecules 19:3988-4005. [DOI:10.3390/molecules19043988]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.