Volume 5, Issue 2 (8-2016)                   pps 2016, 5(2): 52-62 | Back to browse issues page

XML Persian Abstract Print

, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran , m.khezri@urmia.ac.ir
Abstract:   (9533 Views)

Khezri  M. 2016. Biofilm  formation  in  probiotic  bacterium Bacillus subtilis. Plant  Pathology  Science 5(2):52-62.

Most bacteria have a common ability to form communities known as biofilm. They are varied in structure and function, but have some similarities in general properties. The main compounds of biofilms are extracellular polysaccharides. The probiotic Bacillus subtilis is a gram-positive, rod-shape, endospore-forming and soil inhabiting bacterium that has many agricultural use, such as plant growth promoting activity and biocontrol potential against many of phytopathogens. Biofilm formation is an important microbial survival strategy that enables microorganisms to stay together for long time. Biofilm can protect the bacteria against unfavorable conditions, like antibiotics, chemical pesticides and biocide components. Capability of biofilm formation in probiotic B. subtilis plays significant role in root colonization and biological control of plant pathogens.

Full-Text [PDF 248 kb]   (840 Downloads)    
Type of Study: EXTENTIONAL | Subject: Special

1. Abee T., Kovács A. T., Kuipers O. P. & van der Veen S. 2011. Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology 22:172-179. [DOI:10.1016/j.copbio.2010.10.016]
2. Bais H. P., Fall R., & Vivanco J. M. 2004. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology 134:307-319. [DOI:10.1104/pp.103.028712]
3. Bendori S. O., Pollak S., Hizi D. & Eldar A. 2015. The RapP-PhrP Quorum-Sensing System of Bacillus subtilis Strain NCIB3610 Affects Biofilm Formation through Multiple Targets, Due to an Atypical Signal-Insensitive Allele of RapP. Journal of Bacteriology 197:592-602. 9. Brandenburg K. S., Rodriguez K. J., McAnulty J. F., Murphy C. J., Abbott N. L., Schurr M. J. & Czuprynski C. J. 2013. Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 57:1921-1925. https://doi.org/10.1128/AAC.00007-13 [DOI:10.1128/JB.02382-14]
4. Chai Y., Chu F., Kolter R. & Losick R. 2008. Bistability and biofilm formation in Bacillus subtilis. Molecular Microbiology 67:254-263. [DOI:10.1111/j.1365-2958.2007.06040.x]
5. Chen Y., Yan F., Chai Y., Liu H., Kolter R., Losick R. & Guo J. H. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology 15:848-864. [DOI:10.1111/j.1462-2920.2012.02860.x]
6. Chu F., Kearns D. B., Branda S. S., Kolter R. & Losick R. 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Molecular Microbiology 59:1216-1228. [DOI:10.1111/j.1365-2958.2005.05019.x]
7. Cruz L. F., Cobine P. A. & De La Fuente L. 2012. Calcium increases surface attachment, biofilm formation, and twitching motility in Xylella fastidiosa. Applied and Environmental Microbiology 75:1321-1331. [DOI:10.1128/AEM.06501-11]
8. Danhorn T. & Fuqua C. 2007. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 61:40-422. [DOI:10.1146/annurev.micro.61.080706.093316]
9. Davey M. E. & O'Toole G. A. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Review 64:847-867. [DOI:10.1128/MMBR.64.4.847-867.2000]
10. Dogsa I., Oslizlo A., Stefanic P. & Mandic-Mulec I. 2014. Social Interactions and Biofilm Formation in Bacillus subtilis. Food Technology and Biotechnology 52:149-157.
11. Driks A. 2011. Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis. Molecular Microbiology 80:1133-1136. [DOI:10.1111/j.1365-2958.2011.07666.x]
12. Goh S. N., Fernandez A., Ang S. Z., Lau W. Y., Ng D. L. & Cheah E. S. G. 2013. Effects of different amino acids on biofilm growth, swimming motility and twitching motility in Escherichia coli BL21. Journal of Biology and Life Science 4:103-115. [DOI:10.5296/jbls.v4i2.3195]
13. Henry C. S., Zinner J. F., Cohoon M. P. & Stevens R. L. 2009. iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biology Available on line at: http://genomebiology.com/2009/10/6/R69
14. Irie Y. & Parsek M. R. 2008. Quorum sensing and microbial biofilms, Pp. 67-84. In: T. Romeo (ed.). Bacterial Biofilms. Springer-Verlag, Berlin Heidelberg. [DOI:10.1007/978-3-540-75418-3_4]
15. Jiang, X. & Pace J. L. 2006. Microbial biofilms, Pp. 3-20. In: J. L. Pace, M. E. Rupp & R. G. Finch (ed.). Biofilms, Infection, and Antimicrobial Therapy. Taylor & Francis Group, LLC.
16. Kearns D. B. 2008. Division of labour during Bacillus subtilis biofilm formation. Molecular Microbiology 67:229-231. [DOI:10.1111/j.1365-2958.2007.06053.x]
17. Khezri M., Ahmadzadeh M., Salehi Jouzani Gh., Behboudi K., Ahangaran A., Mousivand M. & Rahimian H. 2011. Characterization of some biofilm-forming Bacillus subtilis and evaluation of their biocontrol potential against Fusarium culmorum. Journal of Plant Pathology 93:373-382.
18. Kobayashi K. 2007. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. Journal of Bacteriology 189: 4920-4931. [DOI:10.1128/JB.00157-07]
19. Kolodkin-Gal I., Romero D., Cao S., Clardy J., Kolter R. & Losick R. 2010. D-Amino Acids trigger biofilm disassembly. Science 328:627-629. [DOI:10.1126/science.1188628]
20. Kovács A. T., Smits W. K., Miron´czuk A. M. & Kuipers O. P. 2009. Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environmental Microbiology 11:1911-1922. [DOI:10.1111/j.1462-2920.2009.01937.x]
21. Mohammadipour M., Mousivand M., Salehi Jouzani G. & Abbasalizadeh S. 2009. Molecular and biochemical characterization of Iranian surfactin producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gleosporiodes. Canadian Journal of Microbiology 55:395-404. [DOI:10.1139/W08-141]
22. Molina M. A., Ramos J. L. & Urgel M. E. 2003. Plant-associated biofilms. Review in Environmental Science and Biotechnology 2:99-108. [DOI:10.1023/B:RESB.0000040458.35960.25]
23. Morikawa M. 2006. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of Bioscience and Bioengineering 101:1-8. [DOI:10.1263/jbb.101.1]
24. Oglesby-Sherrouse A. G., Djapgne L., Nguyen A. T., Vasil A. & Vasil M. L. 2014. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa. Pathogens and Disease 70:307-320. [DOI:10.1111/2049-632X.12132]
25. O'Toole G. O. & Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathway: a genetic analysis. Molecular Microbiology 28:449-461. [DOI:10.1046/j.1365-2958.1998.00797.x]
26. Prigent-Combaret C., Vidal O., Dorel C. & Lejeune P. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. Journal of Bacteriology 181:5993-6002.
27. Rudrappa T., Biedrzycki M. L., Kunjeti S. G., Donofrio N. M., Czymmek K. J., Paré P. W. & Bais H. P. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative and Integrative Biology 3:130-138. [DOI:10.4161/cib.3.2.10584]
28. Sauer K. 2003. The genomics and proteomics of biofilm formation. Genome Biology, Available on line at: http://genomebiology.com/2003/4/6/219.
29. Seema M. & Devaki N. S. 2012. In vitro evaluation of biological control agents against Rhizoctonia solani. Journal of Agricultural Technology 8:233-240.
30. Song B. & Leff L. G. 2006. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiological Research 161:355-361. [DOI:10.1016/j.micres.2006.01.004]
31. Stanley N. R., Britton R. A., Grossman A. D. & Lazazzera B. A. 2003. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. Journal of Bacteriology 185:1951-1957. [DOI:10.1128/JB.185.6.1951-1957.2003]
32. Swain, M. R. & Ray. R. C. 2009. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiological Research 164:121-130. [DOI:10.1016/j.micres.2006.10.009]
33. Swift S., Rowe M. C. & Kamath M. 2008. Quorum sensing, Pp. 179-232. In: W. [DOI:10.1007/978-3-540-74921-9_7]
34. El-Sharoud (ed.). Bacterial Physiology: A Molecular Approach. Springer-Verlag, Berlin Heidelberg.
35. Utkhede R. & Koch C. 2004. Biological treatments to control bacterial canker of greenhouse tomatoes. BioControl 49:305-313. [DOI:10.1023/B:BICO.0000025373.69584.08]
36. Xu Z., Islam S., Wood T. K. & Huang Z. 2015. An integrated modeling and experimental approach to study the influence of environmental nutrients on biofilm formation of Pseudomonas aeruginosa. Hindawi Publishing Corporation, Available on line at: http://dx.doi.org/10.1155/2015/506782. [DOI:10.1155/2015/506782]
37. Zeriouh, Z., de Vicente, A., Pérez-García, A. & Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology 16:2196-2211. [DOI:10.1111/1462-2920.12271]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.