دوره 5، شماره 1 - ( 6-1404 )                   سال 5 شماره 1 صفحات 14-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Askari Y, Iranmanesh Y, Pourhashemi M. (2025). Monitoring and correlations soil parameter dynamics in Boyer-Ahmad forests. jfer. 5(1), : 1
URL: http://yujs.yu.ac.ir/jzfr/article-1-139-fa.html
عسکری یوسف، ایرانمنش یعقوب، پورهاشمی مهدی.(1404). پایش تغییرات و همبستگی متغیرهای خاک در جنگل های بویراحمد مجله تحقیقات اکوسیستم‌های جنگلی 5 (1) :14-1

URL: http://yujs.yu.ac.ir/jzfr/article-1-139-fa.html


سازمان تحقیقات، آموزش و ترویج کشاورزی، یاسوج، ایران ، yousef.askari@gmail.com
چکیده:   (273 مشاهده)
سابقه و هدف: پایش متغیرهای خاک جنگل در سال‌های مختلف یک فرآیند مهم برای درک تغییرات اکوسیستمی، سلامت جنگل و تأثیرات عوامل محیطی و انسانی بر خاک است. بررسی پارامترهای کلیدی خاک از جمله تنفس میکروبی، رطوبت خاک، اندوخته کربن آلی، فسفر قابل جذب و نیتروژن در اکوسیستم‌های جنگلی، به­ویژه در شرایط تغییرات اقلیمی و گرمایش جهانی کنونی، از اهمیت راهبردی برخوردار است. این پژوهش سعی دارد تا در توده‌های جنگلی مورد مطالعه (در قطعات نمونه ثابت و دائم مورد نظر)، به سنجش ویژگی‏‌های فیزیکی و شیمیایی خاک، همبستگی بین این عوامل و همچنین پایش درازمدت روند تغییرات در خاک این توده­‌های جنگلی بپردازد.
مواد و روش‌­ها: این پژوهش برای پایش تغییرات خاک و همبستگی بین این عوامل در دو رویشگاه سرآبتاوه و پریکدان واقع در شهرستان بویراحمد از استان کهگیلویه و بویراحمد انجام شد. دو قطعه‌نمونه یک هکتاری (ابعاد 100 × 100 متر) (پریکدان، دامنه جنوبی و سرآبتاوه، دامنه شمالی) و در مجموع به مساحت دو هکتار به‌صورت تصادفی انتخاب و نمونه­برداری گردید. در هر رویشگاه، پنج نمونه خاک از عمق 30-0 سانتی‌متری برداشت و عناصر کربن، نیتروژن، فسفر، و ویژگی­ های رطوبت، تنفس میکروبی، وزن مخصوص ظاهری و درصد سنگ­ریزه خاک اندازه­ گیری گردید. برداشت داده­ های خاک طی 3 سال (1400-1398) اجرای پروژه ملی پایش کربن جنگل تکرار شد.  
یافته ­ها: نتایج پایش تغییرات اندوخته کربن خاک طی سه سال­ متوالی اجرای پروژه، برای برخی از خصوصیات خاک دارای اختلاف معنی­داری بوده است. مقدار رطوبت، تنفس میکروبی و فسفر قابل جذب درخاک قطعه نمونه پریکدان بیشتر از قطعه‌نمونه سرآبتاوه بود. در بین پارامترهای اندازه‌گیری شده تنها میزان تنفس میکروبی در طی سال­های مختلف تفاوت معنی­دار بود. همچنین اثر متقابل بین سال و قطعه نمونه در دو منطقه، حاکی از اختلاف آماری معنی­دار برای نیتروژن خاک بود به نحوی که قطعه‌نمونه سرآبتاوه در سال­های اول و دوم از میانگین بالاتری نسبت به قطعه­ نمونه پریکدان برخوردار بود. نتایج همبستگی متغیرهای اندازه‌گیری‌شده نیز نشان داد که بین مقدار کربن آلی خاک و نیتروژن کل رابطه مثبت معنی­ داری و نیز بین میزان رطوبت خاک با تنفس میکروبی رابطه مستقیم وجود دارد. همچنین در هر دو رویشگاه، کربن آلی خاک بیشترین همبستگی را با اندوخته کربن داشته است.
نتیجه­ گیری: پایش تغییرات و همبستگی متغیرهای خاک در اکوسیستم‌های جنگلی از اهمیت حیاتی برخوردار است، چرا که خاک به عنوان بستر اصلی حیات جنگل، نقش تعیین‌کننده‌ای در چرخه مواد مغذی، ذخیره کربن و حفظ تنوع زیستی ایفا می‌کند. به نظر می­رسد ویژگی‌های فیزیک و شیمیایی و بیولوژیکی خاک، از جمله کربن آلی، رطوبت، نیتروژن، فسفر و فعالیت میکروبی، در یک شبکه پیچیده از روابط متقابل قرار دارند که به شدت تحت تأثیر عوامل محیطی و مدیریتی قرار می‌گیرد. بالا بودن مقدار ماده آلی خاک (کربن آلی)، مواد اولیه مورد نیاز جهت تنفس میکروبی خاک را فراهم­تر می‌نماید و به دلیل رطوبت بیشتر خاک، مواد اولیه به راحتی دراختیار جمعیت میکروبی قرار گرفته و نرخ تنفس افزایش می ­یابد.

شماره‌ی مقاله: 1
متن کامل [PDF 1239 kb]   (97 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1404/2/13 | پذیرش: 1404/6/30

فهرست منابع
1. Anderson, T.H. 2003. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems & Environment, 98(1-3): 285-293. [In Persian] [DOI:10.1016/S0167-8809(03)00088-4]
2. Askari, Y., Iranmanesh, Y. & Pourhashemi, M. 2024. Monitoring some of soil characteristics in the Vezg and Toutnadeh forest stands in Kohgiluyeh and Boyer-Ahmad province. Journal of Forest and Wood Products, 77(2): 173-185. [In Persian]
3. Bakhtiarvand Bakhtiari, S. & Sohrabi, H. 2012. Allometric equations for estimating above and below-ground carbon storage of four broadleaved and coniferous trees. Iranian Journal of Forest and Poplar Research, 20(3): 481-492. [In Persian]
4. Daba, D.E., Dullo, B.W. & Soromessa, T. 2022. Effect of forest management on carbon stock of tropical moist Afromontane Forest. International Journal of Forestry Research, 2022(1): 3691638. [DOI:10.1155/2022/3691638]
5. Das, S., Wang, W., Reeves, S., Dalal, R. C., Dang, Y.P., Gonzalez, A. & et al. 2022. Non-target impacts of pesticides on soil N transformations, abundances of nitrifying and denitrifying genes, and nitrous oxide emissions. Science of The Total Environment, 844:157043. [DOI:10.1016/j.scitotenv.2022.157043]
6. Dong, L., Zeng, W., Wang, A., Tang, J., Yao, X. & Wang, W. 2020. Response of soil respiration and its components to warming and dominant species removal along an elevation gradient in alpine meadow of the Qinghai-Tibetan plateau. Environmental Science & Technology, 54: 17. 10472-82. [DOI:10.1021/acs.est.0c01545]
7. Eskandari Shahraki, A., Kiani, B. & Iranmanesh, Y. 2016. Effects of different land use types on soil organic carbon storage. Iranian Journal of Forest and Poplar Research, 24(3): 379-389. [In Persian]
8. Hashemi, S.F, Hojati, S.M, Hosseini-Nasr, S.M. & Jalilvand, H. 2012. Comparison of nutrient elements and elements retranslocation of Acer velutinum, Zelkova carpinifolia and Pinus brutia in Darabkola-Mazandaran. Iranian Journal of Forest, 4(5): 175-185. [In Persian]
9. Huntington, T.G. 2003. Available Water Capacity and Soil Organic Matter. Pp. 1-5. In: R. Lal (ed.). Encyclopedia of Soil Science. New York.
10. IPCC. 2003. Good practices guidance for land use, land-use change and forestry. Penman, J. et al. (eds.). IPCC National Greenhouse Gas Inventories Program. IGES, Institute for Global Environmental Strategies, Hayama, Japan.
11. Ji, X., Liu, M., Yang, J. & F. Feng. 2022. Meta-analysis of the impact of freeze-thaw cycles on soil microbial diversity and C and N dynamics, Soil Biology and Biochemistry, 168: 108608. [DOI:10.1016/j.soilbio.2022.108608]
12. Kimble, J.M. Rice, C.W. Reed, D. Mooney, S. Follett, R.F. & Lal, R. 2007. Soil carbon management, economic, environmental and societal benefits. 1th Ed., CRC press. New York, 284p. [DOI:10.1201/9781420044096]
13. Lal, R. 2003. Global potential of soil carbon sequestration to mitigate the greenhouse effect, Critical Review in Plant Sciences, 22(2): 151-184. [DOI:10.1080/713610854]
14. Li, Y., Lin, S., Chen, Q., Ma, X., Wang, S. & He, K. 2022. Response of soil respiration to environmental and photosynthetic factors in different subalpine forest-cover types in a loess alpine hilly region. Journal of Forestry Research, 33(2): 653-65. [DOI:10.1007/s11676-021-01340-w]
15. Lorenz, K., & Lal, R. 2010. Carbon sequestration in forest ecosystem. Heidelberg, Springer Press, 298p. [DOI:10.1007/978-90-481-3266-9]
16. Maleki, S. 2023. Changes in Soil Microbial Respiration in Relation to Soil Temperature and Moisture in Different Directions and Distances from the Trunk of Different Oak Species (Case study: Armardeh Forests, Baneh). Quarterly Journal of Environmental Erosion Research, 3(51): 194-211.
17. MacDicken, K.G. 1997. A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects. Winrock International Institute for Agricultural Development, Forest Carbon Monitoring Program, 87p.
18. Mahmoudi Taleghani, E., Zahedi Amiri, GH. Adel, E. & Sagheb-Talebi, KH. 2000. Assessment of carbon sequestration in soil layers of managed forest. Iranian journal of forest and poplar research, 15 (3): 241-252. [In Persian]
19. Neave, H.W., Schütz, K.E. & Dalley, D.E. 2022. Behavior of dairy cows managed outdoors in winter: Effects of weather and paddock soil conditions, Journal of Dairy Science, 105(10): 8298-8315. [DOI:10.3168/jds.2022-21819]
20. Olness A., & Archer D. 2005. Effect of Organic Carbon on Available Water in Soil. Soil Science, 170(2): 90-101. [DOI:10.1097/00010694-200502000-00002]
21. Pastore, G., Tobin, B. & Nieuwenhuis, M., 2019. Quantifying carbon and nitrogen losses by respiration and leaching from decomposing woody debris in reforested coniferous stands in Ireland. Agricultural and Forest Meteorology, 265: 195-207. [DOI:10.1016/j.agrformet.2018.11.023]
22. Rostami, Z., Ghasemi Aghbash, F. & Pazhouhan, I. 2020. Assessment of carbon sequestration rate in biomass and soil of Iranian oak stands under charcoal production (Case study: Bastam area of Al-shater city). Iranian Journal of Forest, 12(2): 161-174. [In Persian]
23. Ruijun, L., Zhanhuan, S., Xiaogan, L., Ping-an, J., Hong-tao, J. & Squires, V. 2010. Carbon Sequestration and the Implications for Rangeland Management. Towards Sustainable Use of Rangelands in North-West China, Part 3, Pp: 127-145. [DOI:10.1007/978-90-481-9622-7_7]
24. Tafazoli, M., Hojjati, S.M., Jalilvand, H., Lamersdorf, N. & Tafazoli, M. 2021. Effect of nitrogen addition on soil CO2 efflux and fine root biomass in maple monocultures of the hyrcanian region. Annals of Forest Science, 78(2): 1-11. [DOI:10.1007/s13595-021-01050-7]
25. Taiz, L. & Zeiger, E., 2013. Plant Physiology. 4th edition, 731p.
26. Varamesh, S., Hosseini, S.M., Abdi, N. & Akbarinia, M. 2010. Increment of soil carbon sequestration due to forestation and its relation with some physical and chemical factors of soil. Iranian Journal of Forest, 2(1): 25-35. [In Persian]
27. Walkley, A. & Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38. [DOI:10.1097/00010694-193401000-00003]
28. Wang, B., Liu, D., Yang, J., Zhu, Z., Darboux, F., Jiao, J. & An, S. 2021. Effects of forest floor characteristics on soil labile carbon as varied by topography and vegetation type in the Chinese loess plateau. Catena, 196: 104825. [DOI:10.1016/j.catena.2020.104825]
29. Yao, H., Peng, H., Hong, B., Ding, H., Hong, Y., Zhu, Y. & et al. 2022. Seasonal and diurnal variations in ecosystem respiration and environmental controls from an alpine wetland in arid northwest China. Journal of Plant Ecology, 15(5): 933-946. [DOI:10.1093/jpe/rtac050]
30. Zarafshar, M., Iranmanesh, Y., Pourhashemi, M., Bordbar, S.K., Negahdarsaber, M., Rousta, M.J., Enayati, K. & Abbasi, A. 2021. The impact of wild pear (Pyrus syriaca and P. globra) stand management on carbon storage of soil and litter and some soil characteristics (case study: Dehkohneh forest of Sepidan, Fars Province). Journal of Forest Research and Development, 7(2): 313-325. [In Persian]
31. Zhang, C., Song, C., Wang, D., Qin, W., Zhu, B., Li, F.Y., Wang, Y. & Ma, W. 2022. Precipitation and land use alter soil respiration in an Inner Mongolian grassland. Plant and Soil, 491: 1- 14. [DOI:10.1007/s11104-022-05638-4]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله تحقیقات اکوسیستم‌های جنگلی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Forest Ecosystems Research

Designed & Developed by : Yektaweb