دوره 3، شماره 2 - ( 12-1395 )                   سال 3 شماره 2 صفحات 12-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rooki M, Tabari Kouchaksaraei M, Sadati S E. (2017). Effect of Rhyzobacteria Inoculation on Improvement of Growth Characteristics of Mediterranean Cypress Seedling under Water Deficit Stress. jfer. 3(2), 1-12.
URL: http://yujs.yu.ac.ir/jzfr/article-1-103-fa.html
روکی مرتضی، طبری کوچکسرایی مسعود، ساداتی احسان. تأثیر تلقیح ریزوباکتر روی بهبود ویژگی‌های رویشی نهال سرو شیراز تحت تنش کم‌آبی نشریه تحقیقات اکوسیستمهای جنگلی 1395; 3 (2) :12-1

URL: http://yujs.yu.ac.ir/jzfr/article-1-103-fa.html


استاد گروه جنگلداری، دانشگاه تربیت مدرس، دانشکده منابع طبیعی نور، نور، ایران ، mtabari@modares.ac.ir
چکیده:   (7131 مشاهده)
سابقه و هدف: سرو شیراز (Cupressus sempervirens L. var. fastigiata) گون‌ه­ای همیشه­ سبز و بومی کشور است که به ­دلیل ارزش‌­های متنوع به ­ویژه استفاده در پارک‌­ها و فضای سبز شهری، مورد توجه فراوانِ اغلب مناطق اقلیمی کشور از جمله استان­‌های زاگرس می‌­باشد. نظر به ضعیف بودن خاک و محدودیت منابع آب، مشکل تولید نهال آن در برخی از این مناطق مشهود است. این تحقیق برای نخستین بار با تلقیح ریزوباکتر Pseudomonus fluorescens  به بستر خاک، مقاومت و تغییرات صفات رویشی نهال آن به تنش کم­آبی را دنبال می­‌کند.
مواد و روش­ ها: آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو تیمار ریزوباکتر (تلقیح و عدم تلقیح) و سطوح مختلف آبیاری (3، 6، 9 و 12 روزه) در سه تکرار چهارتایی طراحی شد. پس از 150 روز ویژگی‌­های رویشی نهال­‌ها اندازه‌گیری شد. یافته­ ها: با افزایش دوره آبیاری (تنش­کم­آبی)، زنده‌مانی، رویش طولی، زی­توده اندام هوایی و زی­توده کل به‌صورت معنی‌­داری کاهش یافتند. به‌طوری‌که که تمام نهال‌­ها در سطح آبیاری 12 روزه از بین رفتند و زنده‌­مانی نهال در دوره آبیاری 9 روزه به 83/49 درصد کاهش پیدا کرد. قطر یقه، طول ریشه، حجم ریشه و نسبت زی­توده ریشه به اندام هوایی با افزایش دوره آبیاری تغییری نکرد. این در حالی است که در نهال­‌های تلقیح یافته با ریزوباکتر، درصد زنده‌­مانی، رویش ارتفاعی، زی‌توده اندام هوایی، زی­توده ریشه، زی­توده کل و شاخص کیفیت نهال نسبت به نهال­‌های تلقیح نشده بیشتر بود.نتیجه­ گیری: نهال­‌های سرو تلقیح شده با ریزوباکتر سودوموناس قادر به تحمل تنش­های کمبود آب و افزایش عملکرد رویشی در شرایط خشکی هستند، اما در شرایط بهینه، تلقیح باکتری تأثیر مثبتی بر درصد زنده‌­مانی نهال ندارد.

 
متن کامل [PDF 237 kb]   (2113 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1395/6/10 | پذیرش: 1395/11/25

فهرست منابع
1. Ahemad, M. & Kibret, M. 2014. Mechanisms and applications of plant growth promoting Rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1): 1-20. [DOI:10.1016/j.jksus.2013.05.001]
2. Ahmadloo, F., Tabari, M., Yousefzadeh, H. & Kooch, Y. 2012. Effects of soil nutrient on seedling performance of Arizona cypress and Medite cypress. Annals of Biological Research, 3(3): 1369-1380.
3. Akbari, V. & Jalili Marandi, R. 2014. Effect of cycocel on growth and photosynthetic pigments of tow olive cultivars under different irrigation intervals. Journal of Horticulture Science, 460-469.
4. Bissonnette, L., St-Arnaud, M. & Labrecque, M. 2010. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with Arbuscular mycorrhizal fungi during the second year of a field trial. Plant and Soil, 332(1-2): 55-67. [DOI:10.1007/s11104-009-0273-x]
5. Dichio, B., Romano, M., Nuzzu, V. & Xiloyannis, C. 2000. Soil water availability and relationship between canopy and roots in young olive trees (cv., Coratana). In IV International Symposium on Olive Growing, Potenza, Italy. 2000 Sep 25, 586: 255-258. [DOI:10.17660/ActaHortic.2002.586.48]
6. Dickson, A., Leaf, A.L. & Hosner, J.F. 1960. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1): 10-13. [DOI:10.5558/tfc36010-1]
7. Dodd, I.C., Belimov, A.A., Sobeih, W.Y., Safronova, V.I., Grierson, D. & Davies, W.J. 2004. Will modifying plant ethylene status improve plant productivity in water-limited environments. In Proceedings for the 4th International Crop Science Congress, Brisbane, Australia, 26.
8. Dominguez, J.A., Martin, A., Anriquez, A. & Albanesi, A. 2012. The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza, 22(6): 429-436 [DOI:10.1007/s00572-011-0420-0]
9. Dominguez, N., Daniel, M., Ana, D.L.C., Jose, A. & Saiz D.O. 2013. Effects of Pseudomonas fluorescens on the water parameters of Mycorrhizal and Non-Mycorrhizal seedlings of Pinus halepensis. Agronomy Journal, 3(3): 571-582 [DOI:10.3390/agronomy3030571]
10. Elfeel, A.A. & Al-Namo, M.L. 2011. Effect of imposed drought on seedlings growth, water use efficiency and survival of three arid zone species (Acacia tortilissub spraddiana, Salvadora persica and Leptadenia pyrotechnica). Agriculture and Biology Journal of North America, 2(3): 493-498. [DOI:10.5251/abjna.2011.2.3.493.498]
11. Garau, A.M., Lemcoff, J.H., Ghersa, C.M. & Beadle, C.L. 2008. Water stress tolerance in Eucalyptus globulus Labill, Subsp. Maidenii (F. Muell.) saplings induced by water restrictions imposed by weeds. Forest Ecology and Management, 255(7): 2811-2819. [DOI:10.1016/j.foreco.2008.01.054]
12. Garcia, J.A.L., Domenech, J., Santamaria, C., Camacho, M., Daza, A. & Manero, F.J.G. 2004. Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environmental and Experimental Botany, 52(3): 239-251. [DOI:10.1016/j.envexpbot.2004.02.003]
13. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41: 109-117. [DOI:10.1139/m95-015]
14. Glick, B.R., Cheng, Z., Czarny, J. & Duan, J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3): 329-339. [DOI:10.1007/s10658-007-9162-4]
15. Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R. & Panneerselvam, R. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces, 60(1): 7-11. [DOI:10.1016/j.colsurfb.2007.05.012]
16. Liu, F., Xing, S., Ma, H., Du, Z. & Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology, 97(20): 9155-9164. [DOI:10.1007/s00253-013-5193-2]
17. Lugtenberg, B. & Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63(1): 541-556. [DOI:10.1146/annurev.micro.62.081307.162918]
18. Marulanda, A., Barea, J.M. & Azcon, R. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28(2): 115-124. [DOI:10.1007/s00344-009-9079-6]
19. Nagakura, J., Shigenaa, H.A. & Takahashi, M. 2004. Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain. Eastern Japan. Journal of Forest Research, 12(2): 143-151. [DOI:10.1007/s10310-006-0257-0]
20. Oliet, J., Planelles, R., Artero, F. & Jacobs, D. 2005. Nursery fertilization and tree shelters affect long-term field response of Acacia salicina Lindl, planted in Mediterranean semiarid conditions. Forest Ecology and Management, 215: 339-351. [DOI:10.1016/j.foreco.2005.05.024]
21. Oliet, J.A., Planelles, R., Artero, F., Valverde, R., Jacobs, D.F. & Segura, M.L. 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forests, 37(3):313-331. [DOI:10.1007/s11056-008-9126-3]
22. Rekha, P.D., Lai, W.A., Arun, A.B. & Young, C.C. 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic condition. Bioresource Technology, 98: 447-451. [DOI:10.1016/j.biortech.2006.01.009]
23. Rincon, A., Valladares, F., Gimeno, T.E. & Pueyo, J.J. 2008. Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree physiology, 28 (11): 1693-1701. [DOI:10.1093/treephys/28.11.1693]
24. Rosas, S.B., Andrez, J.A., Rovera, M. & Correa, N.S. 2006. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biology and Biochemistry, 38: 3502-3505. [DOI:10.1016/j.soilbio.2006.05.008]
25. Sanchez-Blanco, M.J., Alvarez, S., Navarro, A. & Banon, S. 2008. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. Journal of Plant Physiology, 166(5): 467-476. [DOI:10.1016/j.jplph.2008.06.015]
26. Saxton, K.E., Rawls, W.J., Romberger, J.S. & papendick, R.I. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50(4):1031-1036. [DOI:10.2136/sssaj1986.03615995005000040039x]
27. South, D.B., Harrisa, S.W., Barnett, J.P., Hainds. M.J. & Gjerstad, D.H. 2005. Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, USA. Forest Ecology and Management, 204(2-3): 385-398. [DOI:10.1016/j.foreco.2004.09.016]
28. Stepanova, A.N., Robertson-Hoyt, J., Yun, L.M., Benavente, D.Y., Xie, K., Dolezal, S., Jurgens, G. & Alonso, J.M. 2008. TAA1-mediated Auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 133(1):177-191. [DOI:10.1016/j.cell.2008.01.047]
29. Susiluoto, S. & Berninger, F. 2007. Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fennica, 41 (2): 221. [DOI:10.14214/sf.292]
30. Vassilev, N., Vassileva, M. & Nikolaeva, I. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2): 137-144. [DOI:10.1007/s00253-006-0380-z]
31. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2): 571-586. [DOI:10.1023/A:1026037216893]
32. Vyas, P. & A. Gulati, 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1): 174. [DOI:10.1186/1471-2180-9-174]
33. Xie, H., Pasternak, J.J. & Glick, B.R. 2002. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12- 2 that over produce indoleacetic acid. Current Microbiology, 32: 67-71. [DOI:10.1007/s002849900012]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه تحقیقات اکوسیستمهای جنگلی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Forest Ecosystems Researches

Designed & Developed by : Yektaweb