Search published articles


Showing 2 results for Battery

Gholamreza Karimi , Alireza Bidakhti Dehghan ,
Volume 3, Issue 1 (9-2017)
Abstract

Because of increasing demand on new reliable power source for hybrid electric vehicles, lithium-ion (Li-ion) batteries have received much attention in the last decade. Problem free Li-ion batteries are already in use for low power demand applications such as cell phone and laptop battery packs, however; for high power applications such as in automotive propulsion drives, there are serious issues which need to be addressed. Among various issues that high power application lithium-ion (Li-ion) batteries are encountered, thermal issues have received more attention because of their potential to degrade battery performance. In this work, a lumped capacitance heat transfer model is developed in conjunction with a flow network approach to study performance of a commercial-size Lithium-ion battery pack, under various design and operating conditions of a thermal management system. Air, silicon oil and water are chosen as cooling media in the battery pack. Different flow configurations are considered and temperature dispersion, cell-averaged voltage and resistance distributions, and parasitic losses due to the fan/pump power demand are calculated. It is found that application of a coolant with an appropriate viscosity and heat capacity, such as water, in conjunction with a Y-type flow configuration will result in uniform temperature and voltage distributions in the battery pack while keeping the power requirement at low, acceptable levels.
Dr Mohammad Sajjadnejad,
Volume 4, Issue 2 (11-2023)
Abstract

Nowadays, lithium-ion batteries have been commercialized and extensive research is done on improving their properties. The things that are currently the major part of the research are reducing the price of the battery, increasing the energy density of the battery, increasing the lifespan and improving the safety of the battery. In military applications and aviation industries, special attention is paid to battery reliability and safety. The gradual degradation of the materials used in lithium-ion batteries over a long period of time has a negative effect on the electrical performance, lifespan and safety of the battery. This is through increasing the electrical resistance of the battery and even cutting the internal connection of the battery, producing corrosion products and creating passive films on the surface of the material, creating pollutants inside the battery that may react with active materials and leading to loss of uniformity in the material enters the battery and the electrolyte is destroyed. Most of the materials used in lithium-ion batteries were modified after identifying these problems in the battery structure. This article mainly deals with the phenomenon of corrosion in positive and negative current collectors in lithium-ion batteries.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb