Search published articles


Showing 2 results for Nanofluid

, , ,
Volume 1, Issue 1 (9-2014)
Abstract

Copper oxide nanofluid that is obtained by dispersion of copper oxide nanoparticles in water base fluid is used as heat pipe working fluid. Nanofluids because of having better thermophysical properties in comparison with conventional heat transfer fluids, cause heat pipe performance improvement as an effective heat transfer equipment. In this work, a computational fluid dynamic method (CFD) is used to study the effect of using nanofluid and varying volume fraction, size and shape of suspended nanoparticles in nanofluid on heat pipe thermal performance. The results show thermal resistance reduction and heat pipe performance improvement by using nanofluid in comparison with pure water. Also volume fraction enhancement, nanoparticle’s diameter reduction and using cylindrical nanoparticles cause the evaporator and condenser temperature gradient reduction that in low volume fractions the effect of using nanoparticles with small diameter on heat transfer is more than using non spherical nanoparticles


Morteza Deilami, Pedram Pournaderi,
Volume 4, Issue 1 (9-2023)
Abstract

 Heat transfer has an effective role in industrial and engineering applications. In this study, the effect of Al2O3 nanoparticles on laminar forced convection heat transfer flow in a tube is studied. Governing Equations are discretized using the finite difference method on a staggered grid. Nanofluid flow is simulated using single-phase and mixture models. Simulation results show that the average Nusselt Number increases with an increase in the Reynolds Number. Also, by increasing the volume fraction, the average Nusselt number and consequently the heat transfer rate increases. The results of the mixture model are in better agreement with experimental results than the single-phase model.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb