Search published articles


Showing 3 results for Drag Reduction

, , ,
Volume 1, Issue 2 (6-2014)
Abstract

 

In this paper, the impact of micro bubbles as the second phase in the turbulent flow inside the channel flow has been investigated. The developed turbulent flow inside channel containing micro bubbles has been solved using large eddy simulation. Numerical analysis has been done to survey the impact of micro bubbles on turbulent characteristics derived from carrier flow. Finally, the mechanism of reducing frictional drag force was illustrated. According to the results, increasing the volume fraction of bubbles in the constant diameter will decrease the frictional drag force. Also studying the energy spectrum showed that the energy in the small scales has increased and in the large scales decreased.

 
Amin Moosaie, Kourosh Goudarzi, Jalil Abbasi,
Volume 3, Issue 1 (9-2017)
Abstract

Drag reduction in turbulent flows allows achieving of higher speeds and reducing energy consumption in the motion of submerged objects. An efficient technique for drag reduction uses dilute solutions of microfibers. In this paper, a review of available methods for the simulation of turbulent drag reduction by microfiber additives is presented. To compute the turbulent flow, the direct numerical simulation (DNS) technique is employed. The effect of the fibers on the flow is described by a non-Newtonian stress tensor, involving the distribution of fiber position and orientation. The fiber dynamics is governed by a Fokker-Planck equation. The computation involves a numerical solution of three-dimensional, time-dependent Navier-Stokes equations for the incompressible flow of a non-Newtonian fluid. In this article, various methods for solving the Fokker-Planck equation are reviewed.
Mrs. Zahra Hassani, Dr. Abdolrasoul Pouranfard, Prof. Hajir Karimi,
Volume 4, Issue 1 (9-2023)
Abstract

In this study, the effect of adding polyisobutylene (PIB) as drag reducing agent (DRA) and nanoSiO2 particles as heat transfer enhancer to crude oil, separately and also the simultaneous addition of these materials to crude oil as poly-nanofluids (PNFs) in a vertical pipe and under constant heat flux conditions is investigated. The use of drag reducers is one of the most important and simplest methods to overcome some of the energy losses during fluid transpotation. The aim of this study is to investigate the effects of PIB solution and crude oil/silica nanofluid, separately and also the simultaneous effect of adding these two materials, called polyanofluid, on heat transfer and drag reduction in a vertical pipe. In order to make PNFs, polymer-based solutions with concentrations of 10-30 ppm are prepared. Then, nanoSiO2 with concentrations of 0.1-0.5wt% are added to the base fluid. The experiments were performed in the range of Reynolds 5800-8700 and temperature was 25°C. Experimental conclusions predicted that with increasing Reynolds number, temperature and concentration, Nusslet number and heat transfer rate in supplied nanofluids and PNFs enhanced with nanoparticle concentrations, while PIB concentration cause to reduce thermal propertied and improve the tribological properties of prepared PNFs. This occurrence can be attributed to the formation of the polymeric layer around the nanosilica particles.

 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb