Volume 4, Issue 1 (9-2023)                   jste 2023, 4(1): 56-66 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassani Z, Pouranfard A, Karimi H. (2023). Laboratory study of drag reduction and heat transfer improvement in vertical pipe using crude oil/nanosilica/Polyisobutylene polynanofluids. jste. 4(1), : 6 doi:10.61186/jste.4.1.56
URL: http://yujs.yu.ac.ir/jste/article-1-118-en.html
Yasouj university , r.pouranfard@yu.ac.ir
Abstract:   (737 Views)
In this study, the effect of adding polyisobutylene (PIB) as drag reducing agent (DRA) and nanoSiO2 particles as heat transfer enhancer to crude oil, separately and also the simultaneous addition of these materials to crude oil as poly-nanofluids (PNFs) in a vertical pipe and under constant heat flux conditions is investigated. The use of drag reducers is one of the most important and simplest methods to overcome some of the energy losses during fluid transpotation. The aim of this study is to investigate the effects of PIB solution and crude oil/silica nanofluid, separately and also the simultaneous effect of adding these two materials, called polyanofluid, on heat transfer and drag reduction in a vertical pipe. In order to make PNFs, polymer-based solutions with concentrations of 10-30 ppm are prepared. Then, nanoSiO2 with concentrations of 0.1-0.5wt% are added to the base fluid. The experiments were performed in the range of Reynolds 5800-8700 and temperature was 25°C. Experimental conclusions predicted that with increasing Reynolds number, temperature and concentration, Nusslet number and heat transfer rate in supplied nanofluids and PNFs enhanced with nanoparticle concentrations, while PIB concentration cause to reduce thermal propertied and improve the tribological properties of prepared PNFs. This occurrence can be attributed to the formation of the polymeric layer around the nanosilica particles.

 
Article number: 6
Full-Text [DOCX 1404 kb]   (192 Downloads)    
Type of Study: Research | Subject: Special

References
1. Alizad, K., K. Vafai, and M. Shafahi, Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids. International Journal of heat and mass transfer, 2012. 55(1-3): p. 140-155. [DOI:10.1016/j.ijheatmasstransfer.2011.08.050]
2. Chen, H., et al., Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder technology, 2008. 183(1): p. 63-72. [DOI:10.1016/j.powtec.2007.11.014]
3. Faraj, F.H., SILICA POWDER AS DRAG REDUCING AGENT IN GASOIL FLOWING IN PIPELINES SYSTEM.
4. Yang, S.-Q., Drag reduction in turbulent flow with polymer additives. Journal of Fluids Engineering, 2009. 131(5). [DOI:10.1115/1.3111255]
5. Sharma, A.K., A.K. Tiwari, and A.R. Dixit, Rheological behaviour of nanofluids: A review. Renewable and Sustainable Energy Reviews, 2016. 53: p. 779-791. [DOI:10.1016/j.rser.2015.09.033]
6. Moser, R.D., J. Kim, and N.N. Mansour, Direct numerical simulation of turbulent channel flow up to Re τ= 590. Physics of fluids, 1999. 11(4): p. 943-945. [DOI:10.1063/1.869966]
7. Peyghambarzadeh, S., et al., Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler. Heat and Mass Transfer, 2016. 52: p. 63-72. [DOI:10.1007/s00231-015-1650-z]
8. Raei, B., F. Shahraki, and S. Peyghambarzadeh, Experimental study of the effect of drag reducing agent on heat transfer and pressure drop characteristics. Experimental Heat Transfer, 2018. 31(1): p. 68-84. [DOI:10.1080/08916152.2017.1353557]
9. Maltsev, L., A. Malyuga, and B. Novikov, About possible mechanisms of influence of gas bubbles on characteristics of turbulent boundary layer. Thermophysics and Aeromechanics, 2006. 13(3): p. 387-392. [DOI:10.1134/S0869864306030085]
10. Yang, S.-Q. and D. Ding, Drag reduction induced by polymer in turbulent pipe flows. Chemical Engineering Science, 2013. 102: p. 200-208. [DOI:10.1016/j.ces.2013.07.048]
11. Jubran, B., Y. Zurigat, and M. Goosen, Drag reducing agents in multiphase flow pipelines: Recent trends and future needs. Petroleum science and technology, 2005. 23(11-12): p. 1403-1424. [DOI:10.1081/LFT-200038223]
12. Drzazga, M., et al., Influence of nonionic surfactant addition on drag reduction of water based nanofluid in a small diameter pipe. Chinese Journal of Chemical Engineering, 2013. 21(1): p. 104-108. [DOI:10.1016/S1004-9541(13)60447-4]
13. White, C.M. and M.G. Mungal, Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech., 2008. 40: p. 235-256. [DOI:10.1146/annurev.fluid.40.111406.102156]
14. Chapman, B.G., Study of drag reduction by zwitterionic and non-ionic surfactants in low temperature ethylene glycol/water recirculation systems. 2005, The Ohio State University.
15. Pouranfard, A., D. Mowla, and F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids through horizontal pipe turbulent flow of a Newtonian liquid. Journal of Industrial and Engineering Chemistry, 2014. 20(2): p. 633-637. [DOI:10.1016/j.jiec.2013.05.026]
16. Pouranfard, A., D. Mowla, and F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes. Chinese Journal of Chemical Engineering, 2015. 23(3): p. 471-475. [DOI:10.1016/j.cjche.2014.11.023]
17. Edomwonyi-Otu, L.C., M. Chinaud, and P. Angeli, Effect of drag reducing polymer on horizontal liquid-liquid flows. Experimental Thermal and Fluid Science, 2015. 64: p. 164-174. [DOI:10.1016/j.expthermflusci.2015.02.018]
18. Sun, J., et al., Experimental study on drag reduction of aqueous foam on heavy oil flow boundary layer in an upward vertical pipe. Journal of Petroleum Science and Engineering, 2016. 146: p. 409-417. [DOI:10.1016/j.petrol.2016.06.011]
19. Hamidi, M.J., H. Karimi, and M. Boostani, Flow patterns and heat transfer of oil-water two-phase upward flow in vertical pipe. International Journal of Thermal Sciences, 2018. 127: p. 173-180. [DOI:10.1016/j.ijthermalsci.2018.01.020]
20. Paryani, S. and A. Ramazani SA, Investigation of the combination of TiO2 nanoparticles and drag reducer polymer effects on the heat transfer and drag characteristics of nanofluids. The Canadian Journal of Chemical Engineering, 2018. 96(6): p. 1430-1440. [DOI:10.1002/cjce.23121]
21. Liu, D., Q. Wang, and J. Wei, Experimental study on drag reduction performance of mixed polymer and surfactant solutions. Chemical Engineering Research and Design, 2018. 132: p. 460-469. [DOI:10.1016/j.cherd.2018.01.047]
22. Nesyn, G.V., et al., Drag reduction in transportation of hydrocarbon liquids: From fundamentals to engineering applications. Journal of Petroleum Science and Engineering, 2018. 161: p. 715-725. [DOI:10.1016/j.petrol.2017.10.092]
23. Gillissen, J., Polymer flexibility and turbulent drag reduction. Physical Review E, 2008. 78(4): p. 046311. [DOI:10.1103/PhysRevE.78.046311]
24. Mowla, D. and A. Naderi, Experimental study of drag reduction by a polymeric additive in slug two-phase flow of crude oil and air in horizontal pipes. Chemical Engineering Science, 2006. 61(5): p. 1549-1554. [DOI:10.1016/j.ces.2005.09.006]
25. Alsurakji, I., et al., Study of oil‐soluble and water‐soluble drag reducing polymers in multiphase flows. The Canadian Journal of Chemical Engineering, 2018. 96(4): p. 1012-1028. [DOI:10.1002/cjce.23049]
26. Azmi, W., et al., Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Experimental Thermal and Fluid Science, 2013. 51: p. 103-111. [DOI:10.1016/j.expthermflusci.2013.07.006]
27. Ferrouillat, S., et al., Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International journal of heat and fluid flow, 2011. 32(2): p. 424-439. [DOI:10.1016/j.ijheatfluidflow.2011.01.003]
28. Duangthongsuk, W. and S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 2009. 52(7-8): p. 2059-2067. [DOI:10.1016/j.ijheatmasstransfer.2008.10.023]
29. Duangthongsuk, W. and S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. International Journal of Heat and Mass Transfer, 2010. 53(1-3): p. 334-344. [DOI:10.1016/j.ijheatmasstransfer.2009.09.024]
30. Hussein, A.A., Convective heat transfer and stability of oil-based nanofluid. Indian Journal of Science and Technology, 2016. 9(48). [DOI:10.17485/ijst/2016/v9i48/104434]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb