Search published articles


Showing 25 results for Temperature

Ali Moradi, Farzad Sharif Zadeh, Reza Tavakkol Afshari, Reza Maali Amiri,
Volume 1, Issue 2 (1-2015)
Abstract

Seed priming is one of the most important techniques used to improve seed germination under biotic and abiotic stresses. For this purpose, germination and seedling growth characteristics of primed seeds of Tall wheatgrass (Agropyron elongatum (Host.) P. Beauv) were evaluated under drought and low-temperature condition. A factorial experiment was conducted on the basis of randomized completely block design with three factors with four replications. The experimental factors were priming with two levels including urea primed (using urea -4 bar at 10 °C for 36 h) and non-primed seeds germination temperatures, including 3, 6, 9, 12, 15, 20 and 25 °C and osmotic potential including zero (distilled water), -3, -6, -9, and -12 bars (applied by polyethylene glycol 6000). Increasing trend has been observed for all germination indices, except mean germination time, with increasing temperature from 3 to 25 °C and seeds revealed the greatest sensitivity to temperatures below 9 °C. However, this trend was reversed with increasing drought stress, the seeds sensitivity to drought stress started from the potential of -6 bar and reached the maximum in -12 bar. However, primed seeds compared to non-primed seeds have demonstrated better germination under both drought and low-temperature stresses. The results of this study showed that the highest seedling vigor index and germination rates achieved in the temperature range of 20-25 °C and water potential of zero to -3 bar.


Jalal Jalilian, Nabi Khaliliaqdam,
Volume 2, Issue 1 (9-2015)
Abstract

Rocket (Eruca sativa) is an important medicinal plant which not be done any experiment about its germination quantification response to temperature. Thus, an experiment base on CRD performed in seed research laboratory of Urmia University with four replications with ten levels of temperatures includes 1, 3, 5, 10, 15, 20, 25, 30, 35 and 40 0C. Results revealed that the temperature had significant effects on the rate and germination percent and Dent-like model estimated greatly cardinal temperature (base, upper and bottom optimum and ceiling temperatures). Germination rate stopped at equal and less than 0.79 and equal and higher than 47.6 0C and Rmax were 0.066 in 16.9-32.6 0C. Also, results emphasized that Rocket seed needs low temperature for germination but, germination rate and percent of Rocket increased by temperature increment. Therefore, the Rocket can germinate and emerge in dispersal spans of an environmental thermal from 0.79 to 47.6 0C and thus recognized as a crop with allowable production for various seasons and climate.


Maral Etesami, Ali Rahemi Karizaki, Benyamin Torabi,
Volume 2, Issue 1 (9-2015)
Abstract

Germination rate and percentage are maximal at optimum temperatures and then reach to zero at the base and ceiling temperatures. An experiment was conducted at the Gonbad Kavous University laboratory as a completely randomized design with 4 replications, to study germination response to temperature and evaluation of cardinal temperature on germination rate and percentage of hibiscus tea. Seeds germinated at 0 to 45 0C by 5 0C intervals. Results indicated that the response of germination percentage and rate adequately fitted with dent like and segmented functions, continually. Base and ceiling temperatures were 1.66 and 43.33 0C for germination percentage and 4.53 and 42.95 0C for germination rate. Optimum temperatures were 30 0C for germination rate and 11.56 and 33.63 0C for germination percentage. In conclusion, base and favorable temperatures for hibiscus tea seeds were 11 and 35 0C. Therefore it is recommended to cultivate at Gonbad kavous weather condition.


En Mehrazar Ashraf, Kamal Sadat Asilan, Farid Golzardi, Shahram Nazari, Ramin Salehi,
Volume 2, Issue 2 (2-2016)
Abstract

Three separate experiments conducted to survey the response of two populations of common purslane weed collected from Karaj and Ahvaz on germination and early growth. The first experiment was based on 4 levels of flooding, including 1, 2, 4, 8 days plus non-flooding treatment as a control. Second experiment addressed the impact of various acidity levels, such as 4, 5, 6, 7, 8, 9, 10 and finally third experiment considered the influence of high temperatures of 60, 80, 100, 120, 140, 160, 180, 200, 220 centigrade on germination rate, germination percentage, radicle length and plumule length as well as fresh weight of the aforementioned population of common purslane (Karaj and Ahvaz). Analysis of variance revealed that in both weed populations, all germination indices were impressed by flooding periods, acidity levels and high temperatures. Extending the flooding periods resulted in reducing all measured parameters in both weed populations, so the growth of common people was completely inhibited less than 8 consecutive days of flooding. Germination rate and percentage improved gradually by increasing the acidity value from 4 up to 7. An adverse relation was observed between the measured parameters and temperature variations in both Karaj and Ahvaz weed population. Germination rate and percentage, radicle and plumule length, as well as the fresh weight of seedling, decreased significantly in response to increasing the oven temperature. Overall, it can be concluded that boosting our knowledge about both ecology and biology aspects of the common person can pave the way for introducing new ways in line with expanding long-term strategies, improving management systems and predicting the mode of germination and growth of this important weed.


Fatemeh Aliyari, Ali Soltani, Mehrdad Zarafshar,
Volume 2, Issue 2 (2-2016)
Abstract

Select the appropriate tree species and compatible with harsh environmental conditions, with a high survival rate and optimal growth, is very important in the principled forestation projects. Offering moisture - temperature - time seed germination model is one of the solutions to the prediction of seed germination patterns as in this study, germination behavior model in four replications of 50 seeds of Cupressus arizonica (dishes 11cm) on the incubator was examined by applying five levels of water stress (0, -0.5, -1, -1.5, -2 MPa) and temperature treatments (10, 15, 20, 25, 30 °C). The results showed that the optimum temperature (To) and the basic temperature (Tb) for germination is 19.23±0.5 and 6.54 ± 0.0 °C respectively, and amount of the hydro time constant (θH) for this species is 0.29±0.11. According to the results, temperature and water potential factors and their interaction affected significantly on time and percent germination. Value of the hydrothermal time model was determined by using θHT= [(Ψ-Ψb (g)) (T-Tb)] tough model that its rate was 126.3 MPa°C. d with 0.87 coefficients of determination.


Marjan Diyanat, Seyyed Meisam Hosseini,
Volume 3, Issue 1 (8-2016)
Abstract

In order to study the responses of redstem filaree (Erodium cicutarium L.) seed germination to temperature levels, an experiment was carried out in a completely randomized design with four replications and twelve levels of temperature (0, 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40 0C). Results showed that the effect of treatments on germination properties of redstem was significant, so the highest percentage of germination was achieved at 150C and reduced with increasing temperature and was totally inhibited at 40ºC. Based on a linear regression between germination rate and temperature, the cardinal temperatures: minimum (Tmin), optimum (To) and maximum (Tmax) were determined: 0, 15.20 and 37.18 ºC, respectively. A significant difference was not observed in plumule length at a range of 5-30°C that showed that it is less sensitive to temperature in comparison with root length. Highest wet-dry weight was achieved at 20 °C that was not different by 10, 12 and 20°C. Above results suggest that redstem failure could grow in a wide range of growing conditions, but prefers temperate zones. The results of this study are important to understanding thermal requirements and improvement of management strategies of redstem filaree.


Seyyed Mahdi Javadzadeh, Parviz Rezvani Moghaddam, Mohammad Banayan-Aval, Javad Asili,
Volume 3, Issue 2 (2-2017)
Abstract

Roselle is an important medicinal and industrial plant of the family of Malvaceae, and is planted in vast areas of Sistan and Baluchestan. In a laboratory study, the effect of varying temperatures on seed germination of Hibiscus sabdariffa was investigated and minimum, optimum and maximum temperatures for its germination were determined in a completely randomized design with four replications.  For this purpose, temperatures 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50°C were considered in each treatment. Cardinal temperatures for germination were determined consistent with three models (i.e., Intersected-lines Model, Five-Parameters Beta Model and Quadratic Polynomial Model). The traits measured were germination percentage, the speed of germination and mean germination time. The temperature effect on all the measured traits was significant. The results of the regression analysis showed that the best model in terms of cardinal point of this plant is the Five-Parameters Beta Model. Given the results of this model, the minimum and the optimal temperatures for the germination of Roselle are 4.04°C, and 29.83° C, respectively.
 


Omid Ansari, Farshid Ghaderifar, Farzad Sharif Zadeh, Ali Moradi,
Volume 3, Issue 2 (2-2017)
Abstract

The present study sought to evaluate the effect of different temperatures on germination and to determine cardinal temperatures (i.e., base, optimum and maximum) of Secale mountanum at temperatures of 3, 5, 10, 15, 20, 25, 30 and 35oC. Three nonlinear regression models (i.e., segmented, dent-like and beta) were used for quantifying the response of germination rate to temperature. The results showed that in addition to germination percentage, the temperature has a significant impact on germination rate. Given the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), the simple linear regression coefficients a and b, and the relationship between the observed and the predicted germination rates, the best models for determination of cardinal temperatures of Secale mountanum were dent-like and beta models. Base, optimum and maximum temperatures were estimated to be about 2.70 to 3.17, 21.27 to 30.00 and 35.00 to 35.05°C, respectively for the dent-like model. However, given the high value of SE for temperature base and a negative estimate of the base temperature of the beta model, one can report the dent-like model as the right model. Therefore, by using the dent-like model and the estimated parameters, it is possible to use this model for predicting germination.
 


Maryam Mokhtari, Sina Fallah,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: In order to take more advantage of the spring growing season, the mechanisms of germination of spring plants are of great importance at temperatures lower than the optimum temperature. Since one of the ways to reduce damage due to low temperature is enhancing the seedling antioxidant system, in this study the effects of salicylic acid and gibberellin on germination and antioxidant system of pumpkin (Cucurbita pepo) seeds were investigated under low temperatures.
Materials and Methods: A factorial experiment including four concentrations of gibberellin (0, 250, 350 and 450 mg/L), four concentrations of salicylic acid (0, 0.5, 1 and 1.5 mM) and three temperature levels (8, 11 and 14 °C) was performed with a completely randomized design within controlled conditions and six replications at Shahrekord University in 2017. The seeds were immersed in containers containing solutions of 0, 250, 350 and 450 mg/L of gibberellin and solutions with 0, 0.5, 1, and 1.5 mM salicylic acid, were placed in a growth chamber for 24 h under dark conditions at 15 °C. Then the seeds were washed at the desired temperatures, and the germination was recorded every 24 hours based on the 2 mm of radicle length. At the end of the eighth day, after the separation of normal and abnormal seedlings, 20 normal seedlings were selected from each petri dish. Following that, the germination rate, germination percentage, soluble protein, malondialdehyde, superoxide dismutase, guiacol peroxide enzyme, and catalase enzyme were measured. Comparison of means was conducted by the least significant difference test at the 0.05 probability level.
Results: The results showed that none of the treatments used at 8 °C helped germination of the plant and, therefore, 8 °C treatment was removed from the experiment. At the temperature of 11 ° C, the use of salicylic acid 1 mM and at 14 °C, the use of gibberellin 350 mg/L showed the maximum germination rate and germination percentage, compared with the control. At 11 °C, the activity of antioxidant enzymes was more affected by gibberellin hormone so that the highest activity of superoxide dismutase enzyme was observed in 350 mg/L and the highest activity of catalase and guaiacol peroxidase enzymes and the lowest amount of soluble protein were observed in gibberellin 250 mg/L. The salicylic acid hormone was more successful at 14 ° C. The salicylic acid 1.5 mM increased the activity of superoxide dismutase enzyme; and salicylic acid 0.5 mM increased the activity of catalase and salicylic acid 1 mM improved the activity of guiacol peroxidase. This hormone also succeeded in reducing the amount of soluble protein.
Conclusion: In this experiment, seedling tolerance at low temperatures was confirmed by gibberellin and salicylic acid treatments. It is generally concluded that the use of gibberellin and salicylic acid increases the activity of antioxidant enzymes and, as a result, makes pumpkin (Cucurbita pepo) seedlings tolerant to low-temperature stress, and thus, can ameliorate the effect of possible chilling on growth of this crop at the beginning of the season.
 
Highlights:
  1. Gibberellin and salicylic acid treatments make pumpkin seedling tolerant to low temperatures.
  2. Application of gibberellin and salicylic acid increases the activity of antioxidant enzymes.
  3. By using gibberellin and salicylic acid, the effect of possible chilling can be reduced at the beginning of the growing season.

Hosein Sarani, Ebrahim Izadi, Ali Ghanbari, Ali Rahemi,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: In recent years, Japanese morning glory has been recognized as a new weed in some soybean cultivation areas in the Province of Golestan. Japanese morning glory, an annual herbaceous plant, belongs to Convolvulaceae family. Germination is the first step in the competitiveness of a weed in an ecological niche. Among the factors influencing seed germination, temperature and light are the most important environmental factors. The relationship between temperature and germination rate is mainly determined by nonlinear regression, and various models such as dent-like, segmented, beta, and second-order major models are used for this purpose. In this study, we examined the aspects of germination biology of this weed under the influence of temperature and light.
Materials and Methods: In order to investigate the effect of temperature and light on germination of Japanese morning glory, two separate experiments were conducted. Treatments included constant temperature at 7 levels (10, 15, 20, 25, 30, 35, 40) in the first experiment and alternating temperature at 6 levels (30/25, 10/15, 30/20, 35/25, 40/30, 45/35) and light conditions (14 hours of brightness 250 μmoles/m-2-sec-1) and darkness in the second experiment based on a completely randomized design with four replications. The number of germinated seeds was taken up to 4 days after stopping germination every day. Percentage and speed of germination and time reaching 50% germination were calculated. Three models of dent-like, segmented lines and beta were used to determine the cardinal temperature between the temperature and germination rate.
Results: The results showed that temperature had a significant effect on percentage, speed and time taken to reach 50% (D50) of germination of Japanese morning glory. The highest percentage of germination (95%) and germination rate (19.80 seeds per day) were observed in the alternating temperature of 20/30 ° C treatment, respectively. The lowest percentage of germination (83.33%) was observed at alternating temperatures 25/35 °C, and the lowest germination rate (15.10 seeds per day) was observed at 10-20 °C. The segmented lines, dent-like and beta were best fit based on the highest R2adj 0.95, 0.96 and 0.95, respectively. Light had no significant effect on germination, so that germination occurred under both light and dark conditions. According to the results, Japanese morning glory is able to germinate at a wide range of constant and alternating temperatures, although germination is faster at warmer temperatures. On the other hand, the lack of light for germination is another advantage that increases germination, competition, and expansion in agronomic environments.
Conclusion: The findings of the present study suggest that the highest percentage of germination and rate of germination were observed in alternating temperatures of 20/30 °C respectively. Among the nonlinear regression models, the dent-like model represented the best model for describing the germination rate against the temperature in Japanese morning glory. It seems that this weed has better germination at warmer temperatures. Probably from mid-spring following warmer weather, and upon the availability of water, this weed is in a good situation to germinate and compete. It was also found that light had no significant effect on the germination of this weed.

Highlights:
  1. Non-photoblastic seeds
  2. Superiority of dent-like model for predicting germination of Japanese morning glory

Mohammad Ghayour, Majid Taherian, Sadegh Baghban, Saeed Khavari,
Volume 6, Issue 2 (3-2020)
Abstract



Extended Abstract
Introduction: The effect of environmental factors on the developmental stages of a plant causes the planting date to vary from one region to another. Temperature is a very important factor in the maximum percentage germination and germination rate. Priming improves germination rate, brings about the uniformity of germination and reduces seed susceptibility to environmental factors. The purposes of this experiment were to study the effects of priming treatments at different temperatures on the germination characteristics of Hibiscus sabdariffa under laboratory conditions,  to investigate priming treatments on different planting dates and to compare early planting dates on the farms.
Materials and Methods: The experimental study was carried out as a factorial experiment in a completely randomized design with four replications in the Laboratory of Seed Technology of Kashmar University Jihad. The first factor is five primings (Concentrations of ZnSO4 (10 mM), Humic acid (2.5 cc) and the combination of Humic acid and Zinc sulfate, Biological materials (Pota Barvar 2), no treatment (control) and the second factor is five levels of temperature: 10, 12, 14, 16 and 18 °C. Field studies were carried out in Agricultural and Natural Resources Research Center of Kashmar in three separate experiments in 2018. The research was carried out in a completely randomized block design with three replications on three planting dates (March 25th, April 15th, and May 4th, 2018). In each experiment, priming treatments were applied similarly to field experiments.
Results: The results of the current experimental study showed that temperature, priming and temperature interaction with priming had a significant effect on all the traits studied. The highest percentage and rate of germination were observed at 18 °C and priming with Pota Barvar 2. The results also showed that planting date had a significant effect on all the traits studied in the field experiment. Priming showed a significant difference only in stem fresh weight. The interaction effect of priming and planting date was not significant for the traits studied. The highest germination percentage was obtained on April 15’s planting date. By planting later than March 25 to 15 April, a decrease of 74% was observed in the rate of germination. Among priming treatments, the combination of Zinc Sulfate and Humic acid showed a significant superiority, compared with other treatments. 
Conclusion: The findigns suggest that due to the high sensitivity of seed germination of sour tea at low temperatures, the planting date in each area should be carefully chosen so that it does not coincide with temperatures below 18 °C.
 
Highlights:
  1. Evaluation of the effect of seed priming treatment at different temperatures on germination characteristics of Roselle under laboratory conditions.
  2. A different priming treatment leads to increases in germination characteristics of Roselle.

Keyvan Maleki, Elias Soltani, Iraj Alahdadi, Majid Ghorbani Javid,
Volume 6, Issue 2 (3-2020)
Abstract



Extended abstract
Introduction: Conditional dormancy (CD) is a dynamic state between dormancy (D) and nondormancy (ND). Seeds at the conditional dormancy stage germinate over a narrower range of temporal conditions. Conditional dormancy is usually observed in seeds with physiological dormancy. However, primary conditional dormancy has also been seen in some freshly harvested seeds. The purpose of the present study was to investigate whether freshly harvested oilseeds have non-dormancy or conditional dormancy.
Materials and Methods: A factorial experiment was conducted based on a completely randomized design with four replications at Seed Technology Laboratory of Aburaihan Campus, University of Tehran, Iran, in 2018. In this experiment, seeds of rapeseed were collected from 20 different locations in Golestan and Mazandaran provinces. Following that, a germination test was carried out at different temperatures (5, 15, 20, 30, 35°C), and the germination percentage and seed germination rate were recorded. In order to break seed dormancy, two treatments were used: gibberellic acid and after-ripening. For after-ripening treatment, seeds were stored in a paper bag in a dry and dark environment for 6 months. For gibberellic acid treatment, a solution of 100 parts per million (PPM) of gibberellic acid was prepared and added to the Petri dishes. Subsequently, the percentage and rate of germination were recorded.
Results: The results showed that freshly harvested seeds had primary conditional dormancy and germinated in a narrow range of temporal conditions. In addition, cardinal temperatures for freshly harvested seeds were 4.45 and 27.8 for bases and ceilings, respectively. Following gibberellic acid and after-ripening treatments, seeds germinated in a wider range of temperatures and base and ceiling temperatures reached 1.74 and about 40°C, respectively. Thus, germination percentage of seeds treated with gibberellic acid and after-ripening increased at both high and low temperatures. However, the increase in germination percentage was higher at high temperatures than low temperatures. In addition, the effect of gibberellic acid treatment was more than that of after-ripening treatment on the release of dormancy, and after-ripening treatment had an intermediate effect between the gibberellic acid and freshly harvested seeds.
Conclusion: Based on the results of this experiment, the application of gibberellic acid and after-ripening treatments resulted in breaking the dormancy of freshly harvested seeds and increased germination temperature range at high and low temperatures.  Of the two treatments, gibberellic acid had the greatest effect on breaking dormancy and increasing temperature range. Among the cultivars, these changes were maximum in the germination capacity of Hyola 50 and Trapar cultivars and Trapar cultivar had minimum changes.
 
 
Highlights:
1-Conditional dormancy of oilseed cultivars was investigated under different environmental conditions.
2-Application of gibberellic acid and after-ripening treatments resulted in breaking primary conditional dormancy in oilseed cultivars.

Sepideh Nikoumaram, Naeimeh Bayatian, Omid Ansari,
Volume 6, Issue 2 (3-2020)
Abstract



Extended abstract
Introduction: Temperature is one of the primary environmental regulators of seed germination. Seed priming technique has been known as a challenge to improving germination and seedling emergence under different environmental stresses. Quantification of germination response to temperature and priming is possible, using non-liner regression models. Therefore, the objective of this study was to evaluate the effect of temperature and priming on germination and determination of cardinal temperatures (base, optimum and maximum) of Brassica napus L.
Material and Methods: Treatments included priming levels (non-priming, priming with water, gibberellin 50 and 100 mg/l) and temperature (5, 10, 15, 20, 30, 35 and 40 °C). Germination percentage and time to 50% maximum seed germination of Brassica napus L. were calculated for different temperatures and priming by fitting 3-parameter logistic functions to cumulative germination data. For the purpose of quantifying the response of germination rate to temperature, use was made of 3 nonlinear regression models (segmented, dent-like and beta). The root mean square of errors (RMSE), coefficient of determination (R2), CV and SE for the relationship between the observed and the predicted germination percentage were used to compare the models and select the superior model from among the methods employed.
Results: The results indicated that temperature and priming were effective in both germination percentage and germination rate. In addition, the results showed that germination percentage and rate increase with increasing temperature to the optimum level and using priming. As for the comparison of the 3 models, according to the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), CV and SE, the best model for the determination of cardinal temperatures of Brassica napus L. for non-primed seeds was the segmented model. For hydro-priming and hormone-priming with 50 mg/l GA, the best models were segmented and dent-like models and for hormone-priming with 100 mg/l GA,  the dent-like model was the best. The results showed that for non-priming, hydropriming with water, gibberellin 50 and 100 mg/l treatments, the segmented model estimated base temperature as 3.54, 2.57, 2.34 and 2.34 °C and dent-model estimated base temperature as 3.34, 2.45, 2.21 and 2.83 °C, respectively. The segmented model estimated optimum temperature as 24.62, 23.23, 23.69 and 24.38 °C. The dent-model estimated lower limit of optimum temperature and upper limit of optimum temperature as 20.01, 19.62, 16.25, 19.87 and 28.81, 27.38, 29.58 and 27.31 °C.
Conclusion: Utilizing non-liner models (segmented, dent-like and beta) for quantification of germination of Brassica napus L. response to different temperatures and priming produced desirable results. Therefore, utilizing the output of these models at different temperatures can be useful in the prediction of germination rate in different treatments.
 
 
Highlights:
1-The effect of priming on germination of Brassica napuswas investigated.
2-The temperature range of rapeseed germination of Brassica napus changes with the use of seed priming.

Seyyed Hamidreza Ramazani, Fariba Armoon, Mohammad Ali Behdani,
Volume 7, Issue 2 (3-2021)
Abstract

Extended Abstract
Introduction: Guar (Cyamopsis tetragonoloba L.) is a plant from the legumes family. Guar gum is obtained from endosperm in guar seeds. Guar gum is used in many industries such as pharmaceutical and food industries, paper, mining, oil and drilling, textiles, and explosives industries. Modeling is a method that is widely used in predicting plant growth stages and determining the required thermal units in each growing stage, especially germination.
Considering the important therapeutic and industrial uses of guar and the lack of sufficient information and reports to determine the cardinal temperatures of this plant, this study aimed to investigate the effect of temperature on germination traits and early seedling growth and predict the cardinal temperatures (minimum, optimal and maximum) of germination for this plant.
Materials and Methods: This research was carried out at the Seed Sciences and Technology Laboratory of Agricultural College of Sarayan, the University of Birjand in 2017. Experiments were carried out in a completely randomized design with 8 levels of temperature treatments (5, 10, 15, 20, 25, 30, 35, and 40°C), with 5 replications. Germination percentage, daily germination speed, mean daily germination, plumule length, root length, and seedling length were calculated. Cardinal temperatures of germination were calculated using regression analysis with the aid of the proposed models (logistic, two-way, quadratic, and third-order polynomials) using germination speed. The data were analyzed using SAS software and the comparison means were done by Duncan's test at a probability level of 5%. Sigma Plot software was used to plot the germination rate against temperature graphs (for fitting different models).
Results:  The results showed that the effect of different temperature levels on the percentage, speed and mean seed germination was significant (P <0.05). According to the results, the lowest values for percentage, speed, and average germination were obtained at 5, 10, and 40°C, and the highest germination speed was observed at 15 °C and also the highest percentage of germination and average germination was observed at 35°C. The results of the effect of different temperature levels on seedling growth showed that the effect of temperature on the seedling length, stem, and root length was significant (P <0.01), so that the lowest values related to seedling length, plumule, and radicle was found at 5, 10 and 40°C, and the maximum seedling and plumule length were 30°C.
Conclusion: Quantification of the gauge seed germination reaction to different temperature levels was carried out using four dual-functions, logistic, quadratic and triple polynomials. The second-order multitasking regression model, based on the coefficient of explanation (R2) and the amount of deviation, had a suitable and significant fit with the data related to germination rate against the independent temperature variable. Based on the parameters of the model, the optimum temperature was obtained at 26.05°C and the minimum and maximum temperature of guar germination were calculated to be 6.09 and 40°C.

Highlights:
  1. Cardinal temperatures of guar seed germination were predicted.
  2. Based on cardinal germination temperatures, the planting date of guar became predictable.

Sajad Mijani, Mehdi Rastgoo, Ali Ghanbari, Mehdi Nassiri Mahallati,
Volume 7, Issue 2 (3-2021)
Abstract

Extended Abstract
Introduction: Tubers are considered as the most important vegetative organs in reproduction of purple nutsedge, as one of the most troublesome weeds worldwide. Therefore, it is great of importance to investigate the properties of the tuber response to the surrounding environment such as absorption and loss of water. Water uptake is the first step in the sprouting process, though the pattern of water uptake by purple nutsedge tubers has not been documented. Loss of water in tubers is one of the potent factors in reducing their ability to sprouting. Three separate experiments were carried out to investigate the absorption and loss of water content of purple nutsedge tubers.
Material and Methods: In the first experiment, the tubers were placed in a water bath at temperatures of 10, 20, 30, and 40 ° C. Then, the weight of the tubers was measured at different times (24 till 3600 minutes). The water uptake percentage of tubers at different temperatures was studied by fitting the Peleg model. In the second experiment, the initiation day of sprouting was investigated at constant temperatures of 10, 20, 30, and 40 ° C. In the third experiment, water loss and sprouting percentage of tubers were evaluated in two conditions refrigerator (4° C) and room (22 to 25 ° C).
Results: The results showed that the initial water content of tubers was 42% and absorbed 10% extra water after being immersed in water. The water uptake behavior was based on the Peleg model at two stages: (1) rapid uptake (less than 420 minutes (7 hours), and (2) a low uptake with a gentle slope afterward. In the Peleg model, the parameters K1 (minutes *.%weight -1) and K2 (%-1) are water absorption rate and water absorption capacity, respectively. The K1 parameter was negatively against temperature. The highest and lowest values were 49.56 and 28.55 at 10 and 40 ° C, respectively. On the other hand, the trend of the K2 was constant (0.1) at 10-30 °C but was 0.08 at 40 °C. The two-parameter Hyperbola model was superior to the Peleg and predicts the highest water absorption and time to 50 percent water absorption parameters. The results showed that sprouting of purple nutsedge tubers at 10, 20, 30, and 40 °C occurred after 14.44, 6.57, 3.24, and 3.12 days, respectively. Keeping the tubers in the room (22-25 °C) and refrigerator (4 °C), sprouting stopped after 3 and 9 months, respectively. The time required for 50% reduction of sprouting in the room and refrigerator was estimated to be 1.3 months (39 days) and 5.12 months (154 days), respectively. The time required for 50% loss weight of tubers in the room and refrigerator was 1.981 months (59 days) and about 6 months (180 days), respectively. Overall, weight loss (water loss) up 11.85%, resulted in 50% reduction in tuber sprouting.
Conclusion: Maximum water uptake in tubers occurred in less than 420 minutes (seven hours) at all temperatures. Slow sprouting in tubers at low temperatures is not associated with an obstacle in water absorption. Tubers lost half of their sprouting ability by losing water about 12%. On the other hand, the results show that the tubers at cool temperatures (4 °C) lose their water and sprouting capacity less than the ambient temperature (22 to 25 °C).

Highlights:
1- Determination of water absorption pattern on purple nutsedge tubers.
2- Effect of storage location in reducing water and sprouting ability of purple nutsedge tubers.

Mahdi Asadi, Majid Rahimizadeh,
Volume 8, Issue 1 (9-2021)
Abstract

Extended abstract
Introduction: Velvetleaf is one of the most important weeds of cotton, corn, tomato, and soybean fields. Certainly, knowledge of weed seed response to environmental factors (light and temperature) is essential for better understanding the germination mechanism and establishment patterns of weeds community. The present study aimed to evaluate the interaction between light regimes and alternate temperature on the seed germination of velvetleaf.
Materials and Methods: The experiment was conducted in 2015 at the plant physiology laboratory of Bojnourd Branch, IAU. This study was performed as a factorial experiment based on a completely randomized design (CRD) with four replications. The treatments were temperature regimes at four levels (constant temperatures 25°C, alternating temperatures 25-15, 30-20 and 35-25°C) and photoperiod treatments at three levels (continuous darkness, 12-12 light and dark and 16-8 light and dark). Germination percentage, germination rate, germination uniformity, time to 10% germination, and time to 90% germination were evaluated by the Germin program.
Results: The results showed that all traits were affected by temperature and light. Velvetleaf seeds germinated better in the presence of light and alternating temperature. The percentage and rate of germination increased as temperature rised to 30°c and then decreased. However, seed reaction to the night temperature was higher than that of the day temperature. The highest germination percent (98 percent) was achieved under alternating temperature 25-15°C with 12-12h light-dark. In this study, the lowest time required for 10% and 90% germination and highest germination uniformity were observed under alternating temperatures 30-20°C in darkness.
Conclusion: According to the results of this experiment, velvetleaf seeds are able to germinate in a wide range of light and temperature conditions, although they germinate better in the presence of light and alternate temperatures. Therefore, plowing with a moldboard plow can stimulate germination and drain the soil seed bank.

Highlights:
1- Since light stimulates the germination of velvetleaf seeds, so no-tillage system is able to control this weed.
2- Increasing the environment temperature reduces the chance of germination of velvetleaf seeds.             


Morteza Gorzin, Farshid Ghaderi-Far, Hamid Reza Sadeghipour, Ebrahim Zeinali,
Volume 8, Issue 1 (9-2021)
Abstract

Extended abstract
Introduction: Since the maximum percentage and rate of germination of rapeseed occur at a certain temperature, finding these temperatures can play an important role in determining the appropriate time and place for the cultivation of different cultivars. Also, light can affect the germination percentage of rapeseed at different temperatures, but the response of rapeseed to light, especially at lower and higher temperatures, has not been studied. Therefore, this study aimed to investigate the changes in the germination of rapeseed cultivars at different temperatures and determine cardinal germination temperatures based on germination percentage and rate under both the presence and absence of light conditions.
Materials and methods: In this study, germination tests were carried out at 5, 10, 15, 20, 25, 30, 35, 37, and 40°C temperatures in two light conditions (12 h light / 12 h dark) and darkness on nine spring cultivars (Traper, Agamax, Hayola-50, Hayola-420, RGS, Mahtab, Hayola-61, Zafar, and Zarfam) and one winter cultivar (Garo). The four-parameter Hill model was used to describe germination changes over time and the dent model was used to calculate cardinal temperatures. Seed viability at lower and higher temperatures was evaluated by the tetrazolium test.
Results: The evaluation of the trend of cumulative germination percentage over time in different cultivars showed that maximum germination percentage of all cultivars happened in the temperature range between 15-30 °C, some in the temperature range of 10-30 °C (Hyola-61) and others even in the temperature range of 5-30 °C (RGS, Mahtab, Garo, Zafar, and Zarfam) had the highest germination percentage. The highest germination rate in all cultivars was observed at the temperature range of 22-35 °C. Light only had an effect on the germination percentage of the seeds at sub and super optimal temperatures. At these temperatures, light increased the germination percentage. The remaining seed of 5, 10, 35, 37, and 40 °C temperature after transfer to 20 °C did not germinate, whereas most of them were viable based on the tetrazolium test.
Conclusion: The difference in the optimum temperature range for germination percentage and rate showed that to optimize seed performance, the optimal temperature range between the germination percentage and germination rate should be considered as the optimum temperature for germination. At sub and supra optimal temperatures, light leads to improved germination in some cultivars. The effect of light on germination at supra optimal temperatures was far higher than that of sub-optimal ones. Survival of the remaining seeds at the sub and supra optimal temperatures in some cultivars provided evidence of thermo-dormancy in these cultivars, this issue needs further investigation in the future.

Highlights:
1- The cardinal temperatures were studied based on both the percentage and rate of germination and the effect of light on them.
2- Some new varieties such as Traper and Agamax that little information about their characteristics is available were examined.
3- In this study, the reason for the lack of germination of rapeseed at the sub and supra optimal temperatures especially in the darkness has been mentioned.

Sajad Mijani, Mehdi Rastgoo, Ali Ghanbari, Mehdi Nassiri Mahallati,
Volume 8, Issue 1 (9-2021)
Abstract

Extended abstract
Introduction: Purple nutsedge (Cyperus rotundus L.) is one of the problematic weeds worldwide prevalent in tropical and subtropical regions. Tubers are major tools through which purple nutsedge is propagated, whereas its seeds have a low ability to germinate. Therefore, evaluation of the response of tubers against environmental agents is great of importance to know the germination and emergence time. Germination, in turn, is mostly affected by temperature, among other environmental factors. Various models that are recognized as the Thermal Time model have been introduced to describe the seed germination pattern against temperature. Since predicting the emergence of reproductive organs through the modeling is great of importance for improving the control strategies; the present study was carried out to investigate the response of tuber sprouting of purple nutsedge (Cyperus rotundus) against temperature using thermal time models.
Material and methods: The experiment was carried out as a randomized complete block design with three replications in a germinator. Each replicate was placed on a separate shelf. For each replicate, 15 tubers were placed inside a 20 cm Petri dish on a filter paper and then 100 ml of water was added. The experiment was performed separately for constant temperatures of 10, 15, 20, 25, 30, 35, and 40 °C in absolute darkness. To analyze the data as modeling, five thermal time models were evaluated based on the statistical distributions of normal, Weibull, Gumble, logistic and log logistic. Indices such as R2, RMSE, RMSE%, and AICc were used to evaluate the models.
Results: The results showed that all models predicted the germination response of purple nutsedge tuber with high accuracy (R2 = 0.95). A comparison of models based on AICc values showed significant superiority of the Gumble model over other models. According to this index, there was no difference between logistic and log logistic models with normal. Among the models, Weibull was identified as the most inappropriate model. Different models estimated the final germination (Gmax) between 0.93 to 0.94 (93 to 94%). The base temperature was estimated through different models from 7.10 to 7.47 °C. Among the models, the model based on the Gumble distribution proved the skew to the right of the thermal time and Tm. According to the Gumble model, the thermal time parameters required to reach 50% germination (θT (50)) equals 123.8 ° C day and the maximum temperature for germination at 50% probability (Tc (50)) was estimated to be 46.10 ° C.
Conclusion: the thermal time model based on the Gumble probability distribution was most plausible among the models. Also, a distributed right skewness related to the thermal time and Tm was proved through the Gumble model. The parameters obtained from the Gumble model can be used to predict the sprouting of purple nutsedge tubers.
 
Highlights:
  1. Thermal time models were evaluated for prediction of tuber sprouting of purple nutsedge.
  2. The thermal time model based on the Gumble distribution was superior over the normal distribution.
  3. Thermal time and Tm for tuber sprouting of purple nutsedge were distributed as right skewness.

Ahmad Zare, Fatemeh Deris, Zahra Karimi,
Volume 8, Issue 1 (9-2021)
Abstract

Extended Abstract

Introduction: Notobasis (Syrian Thistle (has been introduced as a weed - medicinal plant. In Khuzestan province, the presence of Notobasis is abundant in cereal fields, especially field margins. For successful weed control, knowledge of weed biology and ecology (temperature, salinity and drought stresses) plays a key role in population dynamics of weeds and weed management. Therefore, the study aimed to evaluate Syrian Thistle response to temperature, salinity and drought, as well as to determine the cardinal temperature based on segmented, beta-four-parameter and dent-like models.

Materials and Methods: To investigate the effect of temperature (5, 10, 15, 20, 25, 30, 35 and 40 °C), salinity (zero, 50, 100, 150, 200, 250 and 300 mM) and drought stress (zero, 2) -0.0, -0.4, -0.6, -0.8, -1, -1.2 and -1.4 MPa). Three separate experiments were conducted in 2019 at agricultural science and natural resources university of Khuzestan at the laboratory of weed science with 6 replications. In each Petri dish, 25 seeds were placed and 7 ml of solution was added. In salinity and drought stresses experiments, sodium chloride solution and polyethylene glycol 6000 were used.
Results: Germination of Notobasis at temperatures of 5-30°C was more than 90%, and germination percent decreased to 24% as the temperature increased to 35°C, Based on three models segmented, beta 4 parameter and Dent-like, the Base temperature was estimated 2.95, 2.01 and 0.67°C respectively. Also, the optimum temperature in two models (segmented and beta parameter) was obtained 22.26 and 23.40°C respectively. Ceiling temperature was predicted 40.57, 39.75 and 40.03°C in three models (segmented, beta 4 parameter and Dent- like). Salinity required to reduce 50% of germination percentage, germination rate, seedling length and seedling fresh weight were 152, 85, 151 and 127 mM. 50% reduction of traits such as germination percent, germination rate, seedling length and seedling fresh weight were -0.81, -0.41, -0.43 and -0.45 MPa of drought stress respectively.
Conclusion: The results indicated that Notobasis had germination in a wide range of temperatures (5-35°C). In response to environmental stress, Notobasis have been identified as a weed resistant to salinity and drought stresses. Therefore, the presence of this weed in saline fields and arid areas is not unexpected.

Highlights:
1-To determine of cardinal temperature of Notobasis based on different models.
2-To evaluate germination ecology of Notobasis to environmental factors (temperature, salinity and drought stress) as the first report.


Shamsaldin Skandarnejad, Manoochehr Gholipoor, Hassan Makarian,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract 
 Introduction: A large number of experimental evidence indicates the positive effect of irradiating the seed with ultrasonic waves; so that irradiation causes the production of a more vigorous seedling. Conversely, inappropriate intensity and duration of irradiation can impose deleterious effects on seedlings by damaging the enzymatic activity. There are complex inter-and intra-relations between irradiation components (pre-soaking duration, temperature, and duration of irradiation) and response variables [seedling dry weight (SDW) and percent of abnormal seedlings (PAS)]. Therefore the balance values of the irradiation components cannot be precisely obtained by mean comparison. This study aimed to optimize (finding the balance values of) irradiation components for increased SDW, but diminished PAS of mung bean, using an artificial neural network.
 Materials and Methods: A factorial experiment was conducted based on a completely randomized design with three replications. The factors were six pre-soaking durations (2, 4, 6, 8, 10, and 12 hours), 5 irradiation durations (0, 3, 6, 9 and 12 minutes), and 4 irradiation temperatures (17, 22, 27, and 32 oC). The 25 seeds were chosen for each petri dish. The multi-layer perceptron neural network was used to quantify the relations between variables; the experimental factors were used as the input (regressors), and PAS and SDW as the output of the model (response variables).
Results: The analysis of variance results indicated that the simple and interactive effects of factors were significant on PAS and SDW. The structure 3:3:2 of the neural network, which is based on Secant Hyperbolic function, was suitable. The SDW and PAS were negligibly different for the contribution of the factors in determining their changes. In terms of relative contribution, the factors ranked from higher to lower as irradiation duration, irradiation temperature, and pre-soaking duration. The optimized values of components of irradiation by the neural network were irradiation temperature of 17.96 oC, irradiation duration of 5.3 minutes, and pre-soaking duration of 11.25 hours. For these components, SDW was 27% higher, and PAS tended to be 0.6% lower, compared to the best component combination gotten by mean comparison.
Conclusion: Due to the highly strong interaction of irradiation components on seedling growth, the effect of component (s) tends to be changed intensively with changing the quantity of each component. In terms of finding the best combination of irradiation components, the neural network was more efficient than the mean comparison. Therefore, the neural network could be used as a complementary procedure in such investigations.

Highlights:
1- Irradiation components including irradiation duration and temperature, and pre-soaking duration affected seedling growth.
2- Inappropriate irradiation components diminished seedling growth to the below of no-irradiation conditions.
3- The optimum (balanced) levels of irradiation components increased seedling growth remarkably.



Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.