Search published articles


Showing 6 results for Bean

Mehdi Baraani-Dastjerdi, Mohammad Rafieiolhossaini, Abdorazagh Danesh-Shahraki,
Volume 1, Issue 2 (1-2015)
Abstract

In order to evaluate the electrical conductivity and seedling growth characteristics of red bean seed grown under drought stress and foliar application of zinc and manganese, a split factorial experiment was conducted in a Randomized Complete Block Design in the field and also laboratory experiment at Shahrekord University in 2011. Factors included three levels of drought stress (irrigation after 50, 70 and 90 mm evaporation from class A pan) as the main plot and three levels of zinc foliar application (with water, 100 and 200 grams per hectare zinc), and three levels of manganese foliar application (with water, 150 and 300 grams per hectare manganese) in a factorial combination as subplot. The results showed that severe drought stress led to decrease of electrical conductivity while the seedling and root length of red bean seed were increased. In the measured characteristics, Mn foliar application had a significant effect on electrical conductivity and root dry weight. In different Mn foliar application treatments, the lowest electrical conductivity was related to control while the maximum seedling dry weight was observed at 150 g Mn foliar application per hectare. Zn foliar application had a significant effect on all the traits measured during this experiment. Based on means comparison, the highest seedling dry weight, shoot, seedling and root length, as well as the lowest electrical conductivity, belonged to the 100 g Zn foliar application per hectare. The highest root dry weight was obtained for 200 g Zn per hectare which no significant difference was observed with 100 g Zn per hectare. According to the results of this experiment, mild stress and foliar application of zinc and manganese led to increasing the quality of the produced seeds. In total, foliar application of zinc and manganese (at the amount of 100 and 300 g ha-1 respectively) with mild stress (irrigation after 70 mm evaporation from class A pan) are recommended for the production of seeds with high vigor under this region conditions.

Hossein Sadeghi, Hossein Heidari Sharifabad, Aidin Hamidi, Ghorban Nourmohammadi, Hamid Madani,
Volume 2, Issue 2 (2-2016)
Abstract

In order to evaluate the effect of seed moisture content at harvesting time and drying temperature on soybean seed germination characteristics, an experiment was conducted as factorial (2×3×2) based on Randomized Complete Block Design with three replications in Karaj and Moghan areas. The first factor was cultivar with two levels (Williams and L17), the second factor was seed moisture content with three levels (15, 20 and 25%) and the third factor was drying temperature with two levels (30 and 45 °C). Results show that the germination percentage of producing seeds in Karaj (81.3%) were higher than Moghan area (77.4%). The difference between the germination percentage of dried seeds at 30 and 45◦C with initial seed moisture content of 15% was about 5.5%, while this difference for seeds with 25% initial moisture content was about 18.5%. There was no significant difference between seedling vigor index of seeds with 15% moisture content of two cultivars that have been produced in Karaj, but at 20% moisture content, the seedling vigor index in Williams cultivar (139.7) was higher than L17 cultivar (107.3). The highest (51.42 µsm cm-1 g-1) electrical conductivity of seed leakage soluble was obtained from the L17 cultivar with 25% moisture content and 45◦C and the lowest (28.46 42 µsm cm-1 g-1) rate of it was observed in Williams cultivar with 20% moisture content and 30◦C. According to these results, we must harvest and dry soybean seeds at 30◦C when its moisture content reached under 20%.


Majid Ghanbari, Seyed Ali Mohammad Modarres-Sanavy, Ali Mokhtassi Bidgoli, Parniyan Talebi-Siah Saran,
Volume 4, Issue 2 (3-2018)
Abstract

This study was conducted to evaluate the effect of hydropriming and seed aging on germination and enzymatic properties of pinto bean under salinity stress as factorial based on a completely randomized design with four replications. Two groups of seeds (i.e., non-aged and aged seeds), two hydropriming treatments (i.e., hydro primed and unprimed seeds) and six salinity treatments (i.e., 0, 2, 4, 6, 8 and 10 dS/m) were the experimental factors. The results showed that the highest mean time and percentage of germination, plumule length and vigor were observed in the control (i.e., distilled water) and hydropriming treatments. Maximum root length and percentage of seedling water were obtained in the control (i.e., distilled water) and aged seed treatments. In addition, in terms of radicle dry weight, the highest amount was observed in salinity of 4 dS/m and non-aged hydro primed seeds. The highest plumule dry weight was observed in salinity of 6 dS/m and allometric index in salinity of 8 dS/m for non-aged seed and aged seed without hydropriming, respectively. An increase in the levels of salinity stress and aging the seeds increased the malondialdehyde and reduced the activity of germination, mean time and germination percentage, and seedling growth. Seed hydropriming reduced the peroxidation of the cell membrane and generally improved the speed and uniformity of germination, aged and natural seeds vigor under both salinity and optimum conditions. As a result, hydropriming can increase the tolerance of bean seeds to salinity at the germination stage and increase the germination capacity of stored seeds for cultivation.
 
Highlights:
  1. The effect of hydropriming on recovering the power of seed germination of pinto bean has been studied under the salinity condition.
  2. An attempt has been made to determine the effect of hydropriming on increasing the tolerance of pinto bean seeds to storage and salinity stress condition.
  3. The effect of pinto bean storage on biochemical changes and enzyme activity has been studied in salinity stress condition.

Adel Modhej, Rozbeh Farhoudi, Sanaz Edalat,
Volume 5, Issue 1 (9-2018)
Abstract

Extended abstract
Introduction: Interference caused through weeds’ and crops’ competition for environmental resources and allelopathy brings about damage in crop species. Allelopathy is defined as a direct or indirect inhibiting or provoking effect of a plant on other plants through the production of chemical compounds introduced into the environment. Although the allelopathic effects of the shoot extracts of Xanthium spp and Chenopodium album on the germination of some crops have already been investigated, very few studies have so far been conducted to evaluate their adverse effects on soybean seedling growth. The aim of this study was to investigate the effect of different concentrations of aqueous extract of cocklebur and lambsquarters on germination and soybean seedling growth indices under Petri and Pot conditions.
Materials and Methods: In order to study the allelopathic effects of Cocklebur and Common lambsquarters on germination and seedling growth of soybean, two separate experiments were conducted under petri and pot conditions. In this experiment, the effects of aqueous extract concentrations (25, 50, 75 and 100%) of cocklebur and common lambsquarters were evaluated on seed germination of soybean in a completely randomized design with three replications. In each pot, five soybean seeds were planted with a depth of 2 cm. The extracts were added to the pots for 2 weeks after emergence.
Results: Allelopathic effect of common lambsquarters extract concentrations was higher than that of cocklebur in both experiments. Germination percentage (GP) reduction under 25, 50, 75 and 100% concentrations of common lambsquarters was 57, 84, 96.7 and 100%, respectively. GP reduction under the same concentrations of cocklebur was 17, 20, 34 and 54%, respectively. In the pot culture conditions, the root dry weight of soybean decreased with increases in extract concentration, so that the highest root dry weight belonged to the control treatment with 64 mg and the lowest values belonged to the effect of aqueous extract of weed with a concentration of 100%. The results on the EWRC scale showed that the soybean leaflet damages increased as the extract concentrations increased. The highest leaf damages were obtained in 75 and 100% of cocklebur and Chenopodium concentrations. The negative impacts of common lambsquarters were higher than those of cocklebur.
Conclusion: In general, the results of this study showed that the effects of different concentrations of the lambsquarters extract on germination and soybean growth of the Williams cultivar were higher under both Petri and pot conditions. The percentage of germination in the concentrations of 25, 50, 75 and 100% of the aqueous extract of cocklebur was 17%, 20%, 34% and 54%, respectively, and in lambsquarters, it decreased by 57%, 84%, 96% and 100%, respectively, compared to the control. On the other hand, spraying the extracts of lambsquarters and cocklebur caused necrosis and drying of soybean leaves. According to the results, in the absence of effective control of weeds, especially lambsquarters, in soybean farms, the damage caused by allelopathic elements will lead to a significant reduction in germination and seedling growth.
 
 
Highlights:
  1. In this study, the allelopathic effect of two important soybean weeds on germination and seedling growth of this crop were compared, which had been under-researched.
  2. Seed germination reaction and seedling growth were evaluated for the extract of aerial parts in two seed culture conditions of petri dish and potted seedlings.

Khadijeh Sourazar, Mohammad Sedghi, Raouf Seyed Sharifi,
Volume 9, Issue 1 (9-2022)
Abstract

Extended Abstract
Introduction: The germination stage ensures the durability, establishment, and final yield of plants.  The final density of plants per unit area is resulted when the planted seeds germinate fully and with adequate rate. Plants mainly undergo abiotic stresses that are a considerable constraint for agricultural production worldwide. Seed priming is one of the simplest and cheap methods to improve seed germination, acceleration of seedling growth and establishment, uniformity, reduction of flowering time, vigorous seedling production, etc which leads to improved quality and yield of crop under stressful and non-stressful conditions. This study aimed to investigate the effect of different types of priming on enzymatic and physiological changes of French bean seed under cobalt chloride stress conditions.
Materials and Methods: To examine the effect of priming on germination indices, the activity of antioxidant enzymes and proteins in French bean under cobalt chloride stress, a factorial experiment was performed in a completely randomized design with three replications. These factors included four levels: seed priming with 100 mg / l salicylic acid and mannitol, control and distilled water (no priming), and three levels of cobalt chloride stress (0, 100, and 200 mg / l).
Results: The results showed that with increasing cobalt chloride concentration, germination indices (germination rate, root length, root fresh weight, stem fresh weight and stem dry weight) decreased. However, in the pretreatment of distilled water, salicylic acid, and mannitol there was a significant increase in germination indices (mean germination time, radicle length, plumule length, fresh radicle weight, and weight plumule) was observed. The interaction effect of priming and cobalt chloride caused an increase in radicle dry weight compared to control × stress treatment. The highest values of fresh radicle weight (14.4 g), dry weight of plumule (0.27 g), and plumule length (0.17 cm) were obtained in hydro priming pretreatment. The results also showed that hormone priming under stress conditions of 200 and 100 mg / l cobalt chloride increased protein content and polyphenol oxidase activity of French bean seedlings compared with the control treatment, respectively. Osmo priming increased the activity of catalase and peroxidase enzymes under stress and non-stress conditions resulted by 200 mg / l cobalt chloride.
Conclusion: according to the results of the present study, cobalt chloride reduced some physiological and biochemical traits of French bean seeds. However, the French bean has a relatively high cobalt chloride tolerance capacity, so that it showed good tolerance to different concentrations of cobalt chloride for up to 9 days.

Highlights:
1- The effect of different concentrations of cobalt chloride and different types of priming on the germination of French bean seeds was investigated.
2- French bean seedling protein content increased under the influence of hormone priming.

Elham Latifinia, Hamid Reza Eisvand,
Volume 9, Issue 1 (9-2022)
Abstract

Extended Abstract
Introduction: Structural and physiological delicacy of soybean seeds is known as an important quality indicator in the cultivation of this plant, but at the same time, the most chronic problems of soybean seed quality are the reduction of seed quality during storage and before sowing. The effect of some nutrients on the quality of soybean seeds under accelerated aging stress was investigated
Materials and Methods: Experiments were conducted for two consecutive years (2019-2020) in the research field of Lorestan University, Faculty of Agriculture in a randomized complete block design. Nutritional treatments included nitrogen and phosphorus application (as soil application) and iron and molybdenum as foliar application. Seeds were harvested at the maturity stage and 1000-grain weight and seed coat resistance to mechanical damage was investigated. Following the exposure of seeds to accelerated aging, leakage from seeds and germination were measured.
Results: The results showed that nutrition had a significant effect on all studied traits. However, the effect of year was only significant on 1000-seed weight and resistance to mechanical damage of seed coat. The highest number of traits related to seed quality was related to complete fertilizer treatment (N-P-Fe-Mo) and accelerated aging had a less negative effect on them.
Conclusion: Among the nutrients, nitrogen and phosphorus had the most effect on germination indices, and iron and molybdenum were in the next ranks. Seeds with strong vigor and treated with fertilizer were less affected by accelerated aging and had better germination. The lower the seed vigor, the more sensitive they were to this stress.
Highlights 
  1. The effect of soybean nutrition on seed quality traits was investigated under the accelerated aging test.
  2. The effects of macro- and micro- nutrients on the germination and quality of soybean seeds were investigated.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.