Search published articles


General users only can access the published articles

Maral Etesami, Ali Rahemi Karizaki, Benyamin Torabi,
Volume 2, Issue 1 ((Spring and Summer) 2015)
Abstract

Germination rate and percentage are maximal at optimum temperatures and then reach to zero at the base and ceiling temperatures. An experiment was conducted at the Gonbad Kavous University laboratory as a completely randomized design with 4 replications, to study germination response to temperature and evaluation of cardinal temperature on germination rate and percentage of hibiscus tea. Seeds germinated at 0 to 45 0C by 5 0C intervals. Results indicated that the response of germination percentage and rate adequately fitted with dent like and segmented functions, continually. Base and ceiling temperatures were 1.66 and 43.33 0C for germination percentage and 4.53 and 42.95 0C for germination rate. Optimum temperatures were 30 0C for germination rate and 11.56 and 33.63 0C for germination percentage. In conclusion, base and favorable temperatures for hibiscus tea seeds were 11 and 35 0C. Therefore it is recommended to cultivate at Gonbad kavous weather condition.


Mohsen Azarnia, Abbas Biabani, Hamid Reza Eisvand, Ebrahim Gholamalipour Alamdari, Saeed Safikhani,
Volume 3, Issue 1 ((Spring and Summer) 2016)
Abstract

One of the important strategies for increasing germination speed and germination percentage, to produce high-quality seedling and plant optimal establishment is seed priming. In order to evaluate reactions of a lentil seed to priming duration and concentrations of the applied material as priming, a factorial experiment based on a completely randomized design with three replications was done in the agronomy laboratory of agriculture and Natural Resources College of Gonbad Kavous University in 2013. Factors included priming duration (4, 8 and 12 h) and various concentrations of the priming (hydro priming, hormonal priming by gibberellic acid and salicylic acid with the concentrations of 50, 100 and 150 ppm and non primed seeds). Results showed that the interaction effect of the concentrations and duration of the priming was significant on whole measured traits except the seed vigor index, germination percentage and seedling dry weight at 1% probability level. The lowest duration of germination (5, 10, 90 and 95%) obtained in the hydropriming treatment (2.72, 5.43 and 18.17 hour). The highest radicle fresh weight was observed in hydropriming treatment in three studied durations priming. In this study; the highest rate of germination obtained from GA50ppm during 12 hours. GA50ppm increased Germination percentage (98%). The greatest radicle length, shoot length and relative growth rate was obtained in the treatment of the gibberellic acid 100 ppm during 8 hours. All the average, gibberellic acid 100 ppm in 8h had an additive effect on the most of the measured traits of the lentil seed. Therefore, it can be introduced as the best mixture treatment.


Ebrahim Gholamalipour Alamdari, Behroz Seifolahi, Zeinab Avarseji, Abbass Biabavi,
Volume 5, Issue 1 ((Spring and Summer) 2018)
Abstract

Extended abstract
Introduction: Generally speaking, plants contain various organic compounds which could influence the behavior of plant communities. These compounds are basically secondary metabolites which are found in various parts of plants such as rhizomes, roots, stems, leaves, flowers, fruits and seeds. The objective of the present study was to investigate the hetrotoxicity potential of different organs of Euphorbia maculata weed on traits of germination, chlorophyll and carotenoids pigments of wheat cultivars.
Material and Methods:  In this experiment Euphorbia maculate weed was collected at full maturity stage from the Moghan region, located in Ardebil Province. Then various organs of Euphorbia maculate such as stems, leaves, and fruits were separated from each other. Another treatment namely, a mixture of different organs, was also made. This experiment was carried out as a factorial, adopting a completely randomized design with three replications in Weeds Science Laboratory of Gonbad–e- Kavous University in 2017. The first factor was wheat cultivar at two levels, consisting of Morvarid and Gonbad and organs in 5 levels (control, stem, leaf, fruit and their mixture, with equal amount of each) were the second factor. For the bioassay experiment, from each organ and their mixture, 5% suspension (w/v) was prepared, using distilled water. 10 ml of concentrated extract of each organ was applied on 50 sterilized seeds of cultivars of interest in a petri dish containing filter paper. After 7 days, traits such as rate and percentage of germination, radical length, shoot length, seed length vigor index, chlorophyll a, b and total content and carotenoids content were measured.
Results:  The results showed that unlike the Morvarid cultivar, germination rate and germination percentage of the Gonbad cultivar significantly decreased, using aqueous extract of various organs of Euphorbia maculata and their mixture. The results also showed that the inhibition effect of fruit and leaf organs on the rate and germination percentage of the Gonbad cultivar were higher than that of other organs and their mixture. According to the results, stem, leaf and fruit extracts had a higher toxic effect on the radical length, compared with the shoot length of the Gonbad cultivar. The results of mean comparison also showed that seed length vigor index of the Morvarid and Gonbad cultivars decreased, due to hetrotoxic compounds of all organs of Euphorbia maculate. In terms of this trait, the highest significant decrease was found in the Gonbad cultivar, which was about 84.13%, compared with the control. In this study, the decreases in the photosynthesis pigments of total chlorophyll and carotenoids in both cultivars with aqueous extract of stem, leaf and fruit organs of Euphorbia maculata were different. The highest decrease of pigments was found in the fruit organ of the Morvarid cultivar. However, aqueous extract of mixed organs had a significant decrease and increase on the content of these pigments in the Morvarid and the Gonbad cultivars, respectively, as compared with the control. This may be due to differences in the quantity and quality of some allelochemicals as well as different reactions of the cultivars.
Conclusions:  Given the evidence of the hetrotoxicity potential of various organs of Euphorbia maculata weed on traits of germination as well as the chlorophyll and carotenoids content of wheat cultivars, it is advisable to exploit huge biomass generated by these luxuriantly growing weeds as bio-compounds in sustainable agriculture.
 
 
Highlights:
1- Study of allelopathic effect of Euphorbia maculate on various wheat cultivars in farms of the Moghan plain.
2- Aqeous extract of Euphorbia maculate organs significantly reduces germination as well as seedling growth of the Gonbad cultivar.
Vahdat Rajaee, Ebrahim Gholamalipour Alamdari, Zeinab Avarseji, Masoumeh Naeemi,
Volume 5, Issue 2 ((Autumn & Winter) 2019)
Abstract



Extended abstract
Introduction: Nowadays exploitation of hetrotoxic characteristics  of hetrotoxic plants regarding  harmful effects of synthetic herbicides can most important role in weeds management and their control. In fact chemical compounds which is released by root, stem, leaf, flowers, seeds pollen, fruit and seeds can be used as bio herbicides and bio pesticides. The purpose of this srudy was evaluation of hetrotoxicity potential of Datura stramonium L. shoots on germination traits and photosynthetic pigments of wheat cultivars.
Materials and Methods: An experiment was conducted to evaluate hetrotoxicity potential of aqueous extract of different organs of Datura stramonium L. such as stem, leaf, fruit and mixed of them on germination traits and photosynthetic pigments of two cultivars of wheat (Kohdasht and N8720) as factorial experiment based on compeletly randomized design in three replications in Weeds Scince Laboratory of Gonbad-e- Kavous University in 2017. Datura stramonium shoot was collected at fruit formation stage in the Moghan plain and seprated into stem, leaf and fruit firstly. Five ml of studied extracts as well as mixed of them were added on 25 disinfected seeds of studied cultivars separately.
Results: Results showed that wheat cultivars had a different response to organs extract and this difference also were significant for various organs extract as well as interaction effect of cultivars in organs extract. Mean comparison of interaction of cultivars and organs showed that germination percent of Kohdash were decreased under experimental treatments. The highest decrease effect was obtained in the leaf extract about 98.33%. In return, stem, fruit and mixed organs had an increase effect on germination percent of N8720 about 5.72, 5.72 and 1.41% respectively. Result of the germination rate was similar with result of germination percent. Radicle and shoot length of both cultivars under experimental treatments were decreased. Leaf extract had an highest inhibition effect on radicle and shoot length about 96.70 and 89.21% respectively. Content of total chlorophyll of both cultivars of Kohdast and N8720 were increased under aqueous extract of stem (24.64%) and fruit (14.62%). Where as, extract of other organs and mixed of them had a decrease effect on studied trait. The result of carotenoid also was similar with result of total chlorophyll. Persumably, difference in allelochemicals concentration in various organs of Datura stramonium and physiological chracteractics of studied traits in cultivars caused different behavior.
Conclusions: According to the results, use of Datura stramonium biomass esspecially leaf, it is suggested as natural herbicides and strategy of non- chemical management. To accomplish this need to analyze phytochemical compounds of this weed.
 
Highlights:
  1. Extract of different parts of Datura stramonium weed had a different effect on germination traits and content of chlorophyll and carotenoids  of both cultivars of Kohdast and N8720.
  2. Leaf extract of Datura stramonium significantly decrease germination traits and content of chlorophyll and carotenoids of Kohdasht cultivar seedlings.
3- Use of Datura stramonium can be a good option for appearance of natural herbicides.


Ebrahim Gholamalipour Alamdari, Rashid Poornamazi, Abbas Biabani, Fakhtak Taliey,
Volume 6, Issue 1 ((Spring and Summer) 2019)
Abstract



Extended abstract
Introduction: Interference includes competition for environmental potentials and allelopathy. By releasing chemical compounds, usually of secondary metabolites, in various ways such as root exudation, decomposition, leaching and volatilization, allelopathic weeds may have positive, negative or even neutral effects on crops. Therefore, the purpose of this experiment was to evaluate the hetrotoxic potential of Sorghum halepense, Portulaca oleracea and Centurea depressa in characteristics of germination, chlorophyll content and carotenoid pigments of cress under laboratory conditions.
Materials and methods: For bioassay experiments, various concentrations of 0, 20, 40, 60, 80 and 100% of the weeds such as S. halepense, P. oleracea and C. depressa were prepared with the help of distilled water and were subsequently separately applied on 50 certified seeds of cress. In this experiment, characteristics such as rate and germination percentage, content of chlorophyll a, b, total chlorophyll content and carotenoids were measured based on the chilled acetone method.
Results: Regression model showed that rate and germination percentage of cress significantly decreased at concentrations higher than 80% of S.halepense only. For every unit increase in the concentration, radicle length, seed vigor, content of total chlorophyll and carotenoids of cress decreased about 0.08 cm, 8.68, 0.007 mg/g and 0.007 mg/g, respectively. According to the results, there was an exponential relationship between different concentrations of the P. leracea extract with germination characteristics and photosynthesis pigments of cress so that in most cases, these characteristics up to concentration of 40% had moderate decline, but beyond this concentration, they showed a steep decline. In case of C. depressa, rate and germination percentage, as well as the shoot length of cress decreased about 14.67, 14.67 and 29.81% respectively, using only a concentration of 100%. However, radicle length and seed vigor of cress decreased with increased concentrations of aqueous extract of C. depressa. The most reductive effects were obtained in the treatment of 100%, which were about 52.38 and 55.44% respectively. Amount of total chlorophyll of cress decreased about 14.37, 27.59 and 25.29% respectively in concentrations of 60, 80 and 100% of C. depressa extract, as compared with the control. On the other hand, concentrations of 20 and 40% of C. depressa had no significant effect on the pigment studied. The result of carotenoids content was the same as total chlorophyll.
Conclusions: Based on the results, the weeds studied, especially P. oleracea, with high concentrations, had strong hetrotoxic effect on germination characteristics and photosynthesis pigments. This requires further investigation in a natural environment where targeted plants grow in close proximity.
 
 
Highlights:
  1. Hetrotoxic compounds of Portulaca oleracea, especially in high concentrations significantly decrease seed germination and photosynthetic pigments of cress as compared with Sorghum halepense and Centurea depressa.
  2. Given the evidence for the hetrotoxic effect of aqueous extract of the weeds studied, they could be introduced as candidates for production of bio-herbicides.

Hosein Sarani, Ebrahim Izadi, Ali Ghanbari, Ali Rahemi,
Volume 6, Issue 1 ((Spring and Summer) 2019)
Abstract



Extended Abstract
Introduction: In recent years, Japanese morning glory has been recognized as a new weed in some soybean cultivation areas in the Province of Golestan. Japanese morning glory, an annual herbaceous plant, belongs to Convolvulaceae family. Germination is the first step in the competitiveness of a weed in an ecological niche. Among the factors influencing seed germination, temperature and light are the most important environmental factors. The relationship between temperature and germination rate is mainly determined by nonlinear regression, and various models such as dent-like, segmented, beta, and second-order major models are used for this purpose. In this study, we examined the aspects of germination biology of this weed under the influence of temperature and light.
Materials and Methods: In order to investigate the effect of temperature and light on germination of Japanese morning glory, two separate experiments were conducted. Treatments included constant temperature at 7 levels (10, 15, 20, 25, 30, 35, 40) in the first experiment and alternating temperature at 6 levels (30/25, 10/15, 30/20, 35/25, 40/30, 45/35) and light conditions (14 hours of brightness 250 μmoles/m-2-sec-1) and darkness in the second experiment based on a completely randomized design with four replications. The number of germinated seeds was taken up to 4 days after stopping germination every day. Percentage and speed of germination and time reaching 50% germination were calculated. Three models of dent-like, segmented lines and beta were used to determine the cardinal temperature between the temperature and germination rate.
Results: The results showed that temperature had a significant effect on percentage, speed and time taken to reach 50% (D50) of germination of Japanese morning glory. The highest percentage of germination (95%) and germination rate (19.80 seeds per day) were observed in the alternating temperature of 20/30 ° C treatment, respectively. The lowest percentage of germination (83.33%) was observed at alternating temperatures 25/35 °C, and the lowest germination rate (15.10 seeds per day) was observed at 10-20 °C. The segmented lines, dent-like and beta were best fit based on the highest R2adj 0.95, 0.96 and 0.95, respectively. Light had no significant effect on germination, so that germination occurred under both light and dark conditions. According to the results, Japanese morning glory is able to germinate at a wide range of constant and alternating temperatures, although germination is faster at warmer temperatures. On the other hand, the lack of light for germination is another advantage that increases germination, competition, and expansion in agronomic environments.
Conclusion: The findings of the present study suggest that the highest percentage of germination and rate of germination were observed in alternating temperatures of 20/30 °C respectively. Among the nonlinear regression models, the dent-like model represented the best model for describing the germination rate against the temperature in Japanese morning glory. It seems that this weed has better germination at warmer temperatures. Probably from mid-spring following warmer weather, and upon the availability of water, this weed is in a good situation to germinate and compete. It was also found that light had no significant effect on the germination of this weed.

Highlights:
  1. Non-photoblastic seeds
  2. Superiority of dent-like model for predicting germination of Japanese morning glory

Mahnaz Tatari, Ebrahim Gholamalipour Alamdari, Zeinab Avarseji, Mehdi Zarei,
Volume 6, Issue 2 ((Autumn & Winter) 2020)
Abstract



Extended abstract
Introduction: Due to their aggressive and competitive habits, weeds inhibit the growth of valuable plants. Interference in plants includes environmental competition and allelopathy (Autotoxicity and hetrotoxicity). In hetrotoxicity, chemical compounds released from plants are able to effect the neighboring plants. Proper management of weeds and the exploitation of their hetrotoxicity potential can reduce losses caused by weeds. This could also represent an effective step towards the reduction of the use of herbicides. Therefore, the purpose of this study was to evaluate the effect of hetrotoxicity potential of aqueous extract of various organs of Malva sylvestris L. weed on traits of germination and photosynthetic pigments of Echinochloa crus-galli L.
Material and Methods: An experiment was conducted to evaluate the effect of hetrotoxicity potential of aqueous extract of Malva sylvestris  L. weed including the stem, leaf and flower as well as their mixture on traits of germination and photosynthetic pigments of Echinochloa crus-galli L. as a completely randomized design in three replications in Weeds Science Laboratory of Gonbad Kavous University in 2017. For this experiment, aerial parts of M. sylvestris were first collected at the flowering stage from Ramian field. They were subsequently separated with great care and were powdered. Then from them, 5% suspensions (weight/volume) were prepared, using distilled water. Finally, the extract of each organ of M. sylvestris was added to Petri dishes containing E. crus-galli seeds. After the 7th day, traits such as rate and percentage of germination, radical and shoot elongation, vigor index, total content of chlorophyll a and b and carotenoids were measured.

Results: The results showed that various organs of M. sylvestris and their mixture had different inhibitory effects on traits of germination and seedling length of E. crus-galli weed. The highest inhibition effects on rate and germination percentage and elongation of radical and shoot of E. crus-galli were obtained using leaf extract of M. sylvestris about 64.04, 64.37, 87.69, 62.81%. In this study, radical length is more affected under hetrotoxic compounds of various organs of M. sylvestris, as compared with shoot length. Based on the results, various organs of M. sylvestris and their mixture also have different inhibitory effects on chlorophyll and carotenoid content of E. crus-galli weed. It seems that the differential effects among different organs of M. sylvestris are a function of the threshold concentration of allelochemicals to hetrotoxic compounds of the organs, which causes various response by E. crus-galli.
Conclusion: Given the evidence for the effect of hetrotoxicity potential of various organs of M. sylvestris on traits of germination and pigments of chlorophyll and carotenoid of E. crus-galli and huge biomass generated, it is advisable to exploit allelochemical compounds of this plant as bio-herbicides.
 

 
Highlights:
1- Study of the the effect of hetrotoxic potential of Malva sylvestris weed on germination characteristics and photosynthetic pigments of Echinochloa crus-galli in Ramian field.
2- E. crus-galli weed exhibits great sensitivity to hetrotoxic compounds of various organs of M. sylvestris,  especially the leaves.
3- Allelopathic characteristics of M. sylvestris weed have huge potentials for the production of bio-herbicides.


Ebrahim Gholamalipour Alamdari, Amir Ghorbani, Hossein Sabouri, Meisam Habibi,
Volume 7, Issue 1 ((Spring and Summer) 2020)
Abstract



Extended abstract
Introduction: Without a doubt, plant hetrotoxicity is one of the important factors in determining the distribution and abundance of some species in plant communities. Thus, the purpose of this experiment was to evaluate the effect of phenolic composition obtained from the methanol extract of Echinochola crus-galli on germination traits and cytogenetic behavior of rice.
Materials and methods: This experiment was done to assess hetrotoxic potential of various concentrations (0, 0.024, 0.048, 0.076 and 0.1 mM) of the phenolic composition obtained from the methanol extract of whole-organ of E. crus-galli on germination traits of rice as well as mitosis division of meristematic cells of radicle in a completely randomized design. To extract thephenolic composition, warm extraction method using a methanol solvent was used. For studying mitosis division, first rice seeds were germinated. Then, each of the steps such as fixation, hydrolysis, staining, squashing and microscopic studies were done on the end of the radicle. Mitosis indices and percentage of mitosis inhibition were calculated and also percentage of each of chromosomal abnormalities at four stages of prophase, metaphase, anaphase and telophase as compared to total cells was calculated.
Results: The lowest percentage and rate of germination and relative germination were found in two concentrations of the 0.076 and 0.1 mM of phenolic composition of E. crus-galli, so that no germination was observed in these treatments. In this study, mitosis division was normal in control samples, so that the rice plant included 12 chromosomes in the metaphase stage. Also the chromosomes were normal in the telophase stage and chromosomal abnormalities were not observed in meristem cells of radicle tip of the control. The lowest value of mitosis indices and the number of dividing cells were related to the concentration of 0.048 mM wuth 30.19 and 385 cells, respectively. In the present study, chromosomal abnormalities in the stages of metaphase, anaphase and telophase were increased with increasing concentration of phenolic composition, and were 28.85 and 16.95% in 0.048 mM concentration of phenolic composition, respectively. The most chromosomal abnormalities were of sticky and laggard type, which were related to the concentration of 0.048 mM of phenolic composition with 39.83 and 32.25%, respectively. The highest number of chromosomal bridges and clumping were obtained in 0.024 mM of phenolic composition with about 19.27 and 29.83%, respectively.
Conclusion: In this study, phenolic composition obtained from the methanol extract of E. crus-galli had asignificant inhibitory effect on germination traits and mitosis division in root tip cells of rice. Thus, the amount of E. crus-galli residues in the field should be considered in direct and indirect cultivation of rice.

Highlights:
1-Difference in impact of the phenolic composition obtained from the methanol extract of Echinochola crus-galli on germination and reduced cytogenetic behavior of rice is related to their threshold concentration.
2- It is advised to cultivate varieties of rice resistant to the remnants of harmful compounds of E. crus-galli as direct cultivation or under nursery condition.

Esmaeil Gholnezhad, Naser Samsami, Abbas Abhari,
Volume 7, Issue 1 ((Spring and Summer) 2020)
Abstract



Extended abstract
Introduction: Soybean is a plant that has a moderate tolerance to drought stress. Drought stress is one of the most important abiotic stresses affecting soybean production by about 40%. In addition, drought stress reduces seed vigor as a result of stress conditions. Positive effects of mycorrhizal fungi on the increment of dry matter and plant biomass, especially in low-irrigated conditions and in dry areas have been proven. The reason for the increase in crop yield in mycorrhizal inoculated plants is their water balance in water deficit stress conditions and as a result, absorption of water and mineral elements. Rhizobium bacteria, carbohydrates, and other foods are catched from the phloem vessels and the received energy is used to convert nitrogen to ammonium ion and eventually amino acids. Japonicum rhizobium bacterium is not naturally found in soils of Iran and the bacteria should be added to the soil along with seeds.
Materials and Methods: This experiment was carried out to determine the germination characteristics, seed vigor and its related traits in soybean Kosar cultivar grown under drought stress conditions and inoculation with mycorrhiza and bacteria with three replications during 2018. In the field experiment, drought stress included optimal irrigation (irrigation after 70 mm evaporation), moderate stress (irrigation after 110 mm evaporation) and severe drought stress (irrigation after 150 mm evaporation from class A evaporation pan), mycorrhizal fungus in three levels, mycorrhiza-free, and inoculation with glomus mosseae, Glomus intraradices and Rhizobium bacterium in two levels, including no inoculation and inoculation with Rhizobium japonicum.
Results: The mean comparison showed that the seeds obtained under normal irrigation, inoculation with mycorrhiza and bacteria had the highest dry weight of radicle, plumule and seedling, percentage and germination rate. The lowest electrical conductivity of the seeds and the mean time of germination were obtained under these condition. Severe and moderate drought stress reduced stress tolerance index, root tolerance index and stem tolerance index, seedling vigor index and seed vigor index compared to optimum irrigation about 42-23, 38-18, 30-18, 50-26 and 41-21) percent, respectively. Inoculation with Glomus mosseae and Glomus intraradices increased the seed vigor index, radicle lentgh, plumule lentgh and seedling length compared to non-inoculation with mycorhizal fungi by 48-42, 27-26, 41-37 and 35-33 percent, respectively. Inoculation with Rhizobium japonicum increased radicle lentgh, plumule lentgh and seedling lentgh compared to non-inoculation with bacterium by 21%, 16% and 18%, respectively. The highest water percentage in seedling tissue was obtained under optimum irrigation conditions, inoculation with mycorrhizal fungi and inoculation with rhizobium bacteria.
Conclusion: According to the results of this study, in all three different irrigation conditions to improve germination and increase seed vigor, the use of mycorrhiza fungi is effective especially glomus mosseae and inoculation with Rhizobium bacteria.

Highlights:
  1. Germination characteristics, germination rate and duration of soybean Kosar cultivar on seeds obtained under different irrigation conditions were investigated.
  2. The effect of mycorrhiza and bacteria on seed vigor and related traits were evaluated under different levels of drought stress.
  3. The damage done to the seed membranes due to the interaction of irrigation and inoculation with mycorrhiza and bacterium was investigated.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.