Search published articles


Showing 6 results for Eisvand

Mohsen Azarnia, Abbas Biabani, Hamid Reza Eisvand, Ebrahim Gholamalipour Alamdari, Saeed Safikhani,
Volume 3, Issue 1 ((Spring and Summer) 2016)
Abstract

One of the important strategies for increasing germination speed and germination percentage, to produce high-quality seedling and plant optimal establishment is seed priming. In order to evaluate reactions of a lentil seed to priming duration and concentrations of the applied material as priming, a factorial experiment based on a completely randomized design with three replications was done in the agronomy laboratory of agriculture and Natural Resources College of Gonbad Kavous University in 2013. Factors included priming duration (4, 8 and 12 h) and various concentrations of the priming (hydro priming, hormonal priming by gibberellic acid and salicylic acid with the concentrations of 50, 100 and 150 ppm and non primed seeds). Results showed that the interaction effect of the concentrations and duration of the priming was significant on whole measured traits except the seed vigor index, germination percentage and seedling dry weight at 1% probability level. The lowest duration of germination (5, 10, 90 and 95%) obtained in the hydropriming treatment (2.72, 5.43 and 18.17 hour). The highest radicle fresh weight was observed in hydropriming treatment in three studied durations priming. In this study; the highest rate of germination obtained from GA50ppm during 12 hours. GA50ppm increased Germination percentage (98%). The greatest radicle length, shoot length and relative growth rate was obtained in the treatment of the gibberellic acid 100 ppm during 8 hours. All the average, gibberellic acid 100 ppm in 8h had an additive effect on the most of the measured traits of the lentil seed. Therefore, it can be introduced as the best mixture treatment.


Vahid Sayedena, Babak Pilehvar, Kambiz Abrari-Vajari, Mehrdad Zarafshar, Hamid Reza Eisvand,
Volume 6, Issue 1 ((Spring and Summer) 2019)
Abstract



Extended Abstract
Introduction: Production of nanoparticles and their use are on the rise in different areas of plant science. However, in spite of their increasing production, there is limited information about their effects on plant biology. In the current study, the potential of TiO2 nanoparticles was investigated for the purpose of improving seed germination of Sorbus luristanica and then subsequent effects of nanoparticles on the growth and biomass of the plants were determined.
Materials and Methods: Seeds of S. luristanica were collected from its natural stands. The seeds were primed with different concentrations of 0, 75, 150, 250, 350 and 500 TiO2 nanoparticles miligeram per liter for 24 h. The treated seeds were placed in wet sand at room temperature for 2 weeks and then in cold for 3 months. The expriment was set as a completely randimized design with 4 replications. Aftre 3 months of stratification in moistened sand, the stratified seeds were put in the germinator and with the appearance of seed germination signs, germination data were recorded daily during 22 days. At the end of the seed germination experiment, some germination parameters such as seed germination percentage, seed vigority and mean time to germination were calculated. Moreover, some growth and biomass parameters including leaf number, plant height and dry and fresh biomass of leaf, stem as well as roots were measured. In addition, scaning electron microscopic (SEM) was used for observation of presence and adhesiveness of TiO2 nanoparticles on the seed coat.
Results: Based on the results, all the germination parametres including seed germination percentage, seed vigoroty and mean germination time were improved by the TiO2 nanoparticles treatments. In addition, 500 mg.L-1 treatment considerably improved seed germination characteristics. The peresence of TiO2 nanoparticles on the treated seeds and lack of the nanomatreials on the conrtol seeds were obsereved by scaning electron microscopic pictures. The One-way ANOVA showed that 75 mg.L-1 treatment was more succesful for improving the grwoth (such as shoot length) and biomass production (fresh and dry biomass of leaf, stem and root and total biomass as well).  
Conclusion: It can be concluded that priming of the seeds of this species with different concentrations of TiO2 nanoparticles leads to improvement of seed germination and growth and biomass parameters. However, the patterns of effects were different in each phase. Therefore, the objectives should be formulated first and then the best concentration should be chosen. It seems that with appropriate concentrations, nanoparticles can be useful for breaking seed dormancy and production of the species. Given the promising resutls of 150 mg.L-1 treatment, it can represent a successful treatment for breaking seed dormancy and seedling production of S. luristanica.
 
 
Highlights:
1- Study of seed germination of Sorbus luristanica for the first time
2- Using Nano-materials and their potentials in breaking seed dormancy and improving the species germination
3- Using SEM in order to study presence and adhesiveness of nanoparticles on the seed coat
Forough Hajivand Ghasemabadi, Hamid Reza Eisvand, Naser Akbari, Omid Ali Akbarpour,
Volume 6, Issue 1 ((Spring and Summer) 2019)
Abstract



Extended Abstract
Introduction: Agriculture has been influenced by different abiotic stresses such as temperature, drought and salinity, which reduces roughly half of the yield of crops. In many forage plants, germination and early seedling growth are the most sensitive stages of their growth in the face of environmental stresses. Current research was conducted to study the effects of drought and salinity iso-osmosis stresses on germination indices and growth parameters of three clover species, including Trifolium resupinatum, T. alexandrinum and T. incarnatum.
Material and Methods: Two separate experiments (drought and salinity) were conducted as a factorial experiment based on a completely randomized design with three replications. The test factors included clover species with three levels, including T. resupinatum, T. alexandrinum and T. incarnatum and different levels of drought and salinity potentials (0, -2, -4, -6, -8, -10 and -12 bar) due to polyethylene glycol 6000 (PEG 6000) and sodium chloride (NaCl), respectively. Sterile disposable petri dishes with a diameter of 10 cm were used, in each of which, 27 seeds were placed on filter paper and then 5 ml of the desired treatment solution was added to each. Petri dishes were then placed in a germinator at 20°C and relative humidity of 75%. After the end of the desired time germination (About 14 days), from each petri, germination percentage and rate, number of secondary roots, time to get 50% germination (D50), root to shoot ratio and the number of abnormal seedlings were recorded.
Results: Inhibitory effects of salinity and drought stresses affected all germination indices. Germination percentage, rate of germination, root and shoot length all decreased with increasing stress levels, while time to get 50% germination (D50) increased with the increase in stress levels. Under both drought and salinity, all growth parameters of Trifolium resupinatum were higher than the other two species. Germination percentage of T. incarnatum was 0% at -12 bar of drought, but germination of T. resupinatum and T. alexandrinum was 70.33% and 7.33% at -12 bar of these stresses, respectively. Under salinity conditions, all the seeds of the three species germinated at -12 bar. Root to shoot ratio increased with increasing stress levels and at high stress levels, it decreased. The decreases were 41.39% and 0% in drought and salinity, respectively. The number of secondary roots increased with increasing stress levels and the maximum number was observed in Trifolium alexandrinum which was 5.42 and 1 in drought and salinity, respectively. The number of abnormal seedling increased with increasing salinity levels, while under drought conditions there was no abnormal seedling.
Conclusion: Comparison of the effects of sodium chloride and polyethylene glycol showed that sodium chloride reduced germination index due to toxic effects or osmotic effects more than polyethylene glycol solution. ­­­­­­­­­­­­­­­­­­­It seems that Trifolium resupinatum has the best yield in both drought and salinity stresses, and that in drought condition, Trifolium alexandrinum, and in salinity stress, Trifolium incarnatum have the best performance.
                                                                                                                           
 
Highlights:
  1. Introduction of clover species with more tolerance to drought and salinity in germination stage.
  2. Evaluation of germination indices of clover species under drought and salinity iso-osmotic conditions.

Akram Rostamipoor, Ali Mordai, Hamidreza Eisvand,
Volume 6, Issue 2 ((Autumn & Winter) 2020)
Abstract



Extended Abstract
 Introduction: Seed dormancy, as a technique to avoid environmental stress, is important in preserving plant species and could be of various types including physiological, physical, morphological and morph-physiological dormancy. Seed testa hardness is one of the main causes of dormancy in leguminous family plants. A common method for breaking seed dormancy in leguminous plants is the use of scarification treatments. Given that oxygen deficiency is a factor that induces dormancy, scarification treatments through acceleration of gas exchanges, especially oxygen and carbon dioxide, can reduce seed dormancy and finally increase germination percentages. In addition, priming with gibberellic acid can help dormancy breaking in plant species that have physiological dormancy, finally leading to germination. Therefore, the present study investigated seed dormancy and germination to find the most appropriate treatment for the elimination of seed dormancy in three ecotypes of Astragalus cyclophyllus.
Materials and Methods: A factorial experiment based on a completely randomized design with three replications was carried out at Agriculture Laboratory of Lorestan University in 2013. The first factor was three ecotypes of Astragalus Semirom, Damavand and Zanjan, and the second factor was seed dormancy breaking treatments. The applied treatments were: control, (mechanical scarification plus chilling time with 10, 20 and 30 days prechilling at 4°C, mechanical scarification + gibberellic acid at concentrations of 400 and 500 ppm for 48 hours, scarification with sulfuric acid 96% for 2 and 4 min, mechanical scarification and 2% potassium nitrate for 72 h, mechanical scarification and gibberellic acid 400 ppm for 48 h and 20 days prechilling. The measured indices included germination percentage, mean germination time, seedling length, seedling fresh weight, seedling dry weight and alpha-amylase activity.
Results: The results showed that the interactions between seed dormancy breaking treatments and ecotype were significant for all the traits. Based on the results of mean comparison, Damavand ecotype exhibited better performance in terms of most of the traits studied, as compared with Semirom and Zanjan ecotypes. Compared with the treatments applied, mechanical scarification plus gibberellic acid 400 ppm was more effective in germination parameters and seedling vigor index. Mechanical scarification and gibberellic acid 400 ppm for 48 h along with 20 days prechilling increased total germination percentage by an average of 67.68% in Semirom ecotype and was more effective in increasing the activity of α-amylase enzyme.
Conclusion: It seems that seed dormancy of Astragalus cyclophyllus is not of physiological type and increased germination can be due to mechanical scarification in physical dormancy breaking and priming effect of prechilling and gibberellic acid.
 
 
Highlights:

  1. The effect of different dormancy breaking treatments on seed germination was investigated.
  2. Alpha-amylase activity of Astragalus Seed increased under dormancy breaking treatments.

Behzad Nouri Feli, Hamid Reza Eisvand, Naser Akbari, Dariush Goodarzi,
Volume 8, Issue 2 ((Autumn & Winter) 2022)
Abstract

Extended Abstract
Introduction: Providing important and effective elements such as zinc and boron- especially in areas where the soil for some reason cannot meet the needs of the plant- will be a good solution to improve seed and seedling quality and nutrition, and community health status. A considerable part of the wheat producing regions in the country are faced with late season haet during seed development stages. Thus, the present study will investigate the effect of heat stress and mother plant nutrition with zinc and boron micronutrients on seed deterioration and physiological quality of wheat seedlings.
Material and Methods: In a field experiment, wheat seeds were planted on two suitable planting dates (November 20) and late (January 5) to apply late-season heat stress during the seed development stage with three replications in Ramhormoz, Iran. The nutrition of mother plants with zinc and boron elements was done at three levels (nutrient-free and application of zinc and boron) as a foliar application. After harvest, the seeds were transferred to the laboratory and membrane integrity of seed cells was investigated using an electrical conductivity test as an indicator of deterioration. Another part of the seeds was planted in a factorial pot experiment based on RCBD with three replications to evaluate the quality of seeds and seedlings in the greenhouse.
Results: The results showed that exposure of seeds to heat stress during development reduced seed quality as well as seedlings so that the cell membrane in the seeds produced under heat stress conditions was damaged and their electrical conductivity increased by 19%. Also, these seeds showed more sensitivity to deterioration. The percentage of seedling emergence in the stressed seeds decreased by 21.66%. Heat stress also reduced seedling quality indices such as chlorophyll content, shoot dry weight, and root dry weight. Application of zinc and boron on the mother plant not only led to improved quality of seeds and seedlings under normal conditions but also the negative effects of heat stress on seed and seedling quality were reduced. There was a significant negative correlation between the seed electrical conductivity test and qualitative parameters. Therefore, the use of this test is recommended to determine the quality of seeds, especially seeds produced under late-season heat stress conditions.
Conclusion: Noting the negative effect of heat during seed development on seed quality, planting dates should be adjusted as much as possible so that the seed development stage does not coincide with the late-season heat stress. Due to the beneficial effects of using zinc and boron in the mother plant on many traits related to the quality of seeds and seedlings, their application- especially zinc- in soils with deficiency or the possibility of heat stress at the end of the season is recommended.

Highlights:
  1. Zinc and boron micronutrients were used to mitigate the harmful effects of heat stress on seed quality.
  2.  Physiological characteristics of seedlings obtained from seeds produced in the field under late-season heat stress conditions were investigated.

Elham Latifinia, Hamid Reza Eisvand,
Volume 9, Issue 1 ((Spring and Summer) 2022)
Abstract

Extended Abstract
Introduction: Structural and physiological delicacy of soybean seeds is known as an important quality indicator in the cultivation of this plant, but at the same time, the most chronic problems of soybean seed quality are the reduction of seed quality during storage and before sowing. The effect of some nutrients on the quality of soybean seeds under accelerated aging stress was investigated
Materials and Methods: Experiments were conducted for two consecutive years (2019-2020) in the research field of Lorestan University, Faculty of Agriculture in a randomized complete block design. Nutritional treatments included nitrogen and phosphorus application (as soil application) and iron and molybdenum as foliar application. Seeds were harvested at the maturity stage and 1000-grain weight and seed coat resistance to mechanical damage was investigated. Following the exposure of seeds to accelerated aging, leakage from seeds and germination were measured.
Results: The results showed that nutrition had a significant effect on all studied traits. However, the effect of year was only significant on 1000-seed weight and resistance to mechanical damage of seed coat. The highest number of traits related to seed quality was related to complete fertilizer treatment (N-P-Fe-Mo) and accelerated aging had a less negative effect on them.
Conclusion: Among the nutrients, nitrogen and phosphorus had the most effect on germination indices, and iron and molybdenum were in the next ranks. Seeds with strong vigor and treated with fertilizer were less affected by accelerated aging and had better germination. The lower the seed vigor, the more sensitive they were to this stress.
Highlights 
  1. The effect of soybean nutrition on seed quality traits was investigated under the accelerated aging test.
  2. The effects of macro- and micro- nutrients on the germination and quality of soybean seeds were investigated.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.