Search published articles


Showing 4 results for Asadi

Mohammad Reza Abbasi, Maryam Hajhassani, Abbas Mirakhorli, Ali Hamzehnejad, Azita Nakhaei, Gholamreza Khakizadeh, Ramezanali Alitabar, Rasoul Kanani, Maryam Asadipour, Fatholah Nadali, Hassan Mokhtarpour, Zargham Azizi, Ali Shahriari, Majid Rakhshandeh, Hassan Mostafaei, Sam Safari, Gholamreza Abadouz, Homa Manouchehri, Sahebdad Habibifar, Abdolnaser Mahdipour, Hassan Amirabadizadeh, Sahebdad Habibifar, Narges Kazerani, Seyed Norodin Lesani, Abdoul Houssein Askari, Asadolah Fathi, Mohammad Khamaledin Abbasi, Hassan Ghuchigh, Ali Soltani, Ahmad Ghasemi, Mohammad Javad Karami, Mohammad Zamanyan, Sadigheh Anahid, Mirjamaledin Pourpayghambar, Ali Reza Beheshti,
Volume 7, Issue 1 ((Spring and Summer) 2020)
Abstract



Extended abstract
 Introduction: One of approaches to reach sustainable agriculture is to exploit crop diversity, especially in legume species. Since Melilotus spp. (sweet clover) is a forage crop with a suitable yield especially in the marginal lands; therefore collection and characterization of this germplasm is the first effective step for its conservation and utilization in the country. Few accessions of Melilotus genetic resources had been collected in the National Plant Gene Bank of Iran, before this study.
Materials and Methods: Sweet clover genetic resources were collected all over the country using standard descriptors during two years. Twenty-six characteristics of collection sites were recorded and their descriptive statistics were estimated. The collected materials were planted in an experimental field to identify their life cycle. The seeds of collected germplasms were conserved in mid (2-4 °C)- and long (-20 °C)-terms conditions for further using.
Results: A total of 258 accessions were collected. The geographical altitude of plant origin differed from -11 m in Babolsar to 3090 m in Noor Abad in Lorestan. The materials were mostly collected from non-saline habitats. However, eight accessions were collected from mid to high salinity locations. Taxonomically, M. albus, M. officinalis, and M. indicus were identified with a number of 21, 201 and 36 accessions, respectively. M. dentatus and M. sulcatus, which have been mentioned in the former researches in Iran, were not collected in the recent study.
Conclusion: The collected germplasms from marginal lands (saline, low drainage and low fertility lands) may be tolerant to such marginal lands, therefore they can be exploited for the future research. All M. indicus species were annual; whereas there were annual as well as facultative and obligate biennial accessions in the two other species. Lack of access to M. dentatus and M. sulcatus may be an alarm that they may be threatened species in the country. Collected materials in this study along with the former collection in the Iranian National Plant Gene Bank (80 accessions) have provided high potentials of Melilotus genetic resources for exploitation in the further.

Highlights:
1- The three-fold increase in the Melilotus germplasms in the ex-situ conservation system.
2- Alarm for M. dentatus and M. sulcatus which may be threatened with extinction in the country.

Ahmad Zare, Elham Elahifard, Zahra Asadinejad,
Volume 7, Issue 2 ((Autumn & Winter) 2021)
Abstract

 
Extended Abstract
Introduction: Syrian mesquite is introduced as a weed in wheat and barley fields, saffron, cotton and vegetables, and in orchards. The spread of this weed in different climates raises the question of how much native plant conditions can affect germination characteristics. Therefore, the purpose of this study was to evaluate the effect of native plant conditions on germination characteristics in response to environmental stresses (temperature, salinity, and drought).
Materials and Methods: To investigate dormancy elimination and germination response thresholds of two Syrian mesquite ecotypes (Khuzestan and Fars) to environmental factors (temperature, salinity, and drought), four separate experiments were carried out as factorial based on completely block design with three replications at Agricultural Sciences and Natural Resources University of Khuzestan. Treatments included immersion the seeds with concentrated sulfuric acid (96%) (0, 10, 15, 20, 25, and 30 min), different temperature (0, 5, 10, 15, 20, 25, 30, 35, 40, and 45 °C), salinity levels (0, 100, 200, 300, 400, 500, and 600 mM), and different levels of drought stress (0, 0.2, 0.4, 0.6, 0.8, 1 and 1.2 MPa).
Results: The time required for immersion of seeds in sulfuric acid to dormancy breaking for two ecotypes was different. The estimated parameters indicated time of immersion in sulfuric acid to reach 50% germination in the Khuzestan ecotype (11.38 min) was longer than the Fars ecotype (8.10 min). The Khuzestan ecotype was also able to germinate (45%) at 40 ° C, whereas germination in the Fars ecotype was stopped at this temperature. Germination rate and cumulative germination percentage at temperatures below 25 ° C were higher in Fars ecotype than in the Khuzestan ecotype. The results of the salinity experiment showed that 50% reduction in seed vigor index, final germination percentage, and germination rate in the Fars ecotype were 167.48, 404.46, and 307.02 mM respectively and in the Khuzestan ecotype were 0.89. 229, 380.16, and 299.57 mM, respectively. For drought treatments, 50% reduction in final germination percentage, seed vigor index, and germination rate in Fars ecotype were -0.50, -0.38, and -0.39 MPa, respectively, and in Khuzestan ecotype were -0.46, -0.46, and -0.50 MPa, respectively.
Conclusion: Overall, the results showed that native plant climatic conditions (latitude and longitude, elevation, rainfall, and temperature) can affect the degree of seed dormancy, resistance to environmental stresses such as temperature, salinity, and drought.

 
Highlights:
1- Seed germination response thresholds of two ecotypes of Fars and Khuzestan for exposure to temperature and drought and salinity stresses were compared.

Mahdi Asadi, Majid Rahimizadeh,
Volume 8, Issue 1 ((Spring and Summer) 2021)
Abstract

Extended abstract
Introduction: Velvetleaf is one of the most important weeds of cotton, corn, tomato, and soybean fields. Certainly, knowledge of weed seed response to environmental factors (light and temperature) is essential for better understanding the germination mechanism and establishment patterns of weeds community. The present study aimed to evaluate the interaction between light regimes and alternate temperature on the seed germination of velvetleaf.
Materials and Methods: The experiment was conducted in 2015 at the plant physiology laboratory of Bojnourd Branch, IAU. This study was performed as a factorial experiment based on a completely randomized design (CRD) with four replications. The treatments were temperature regimes at four levels (constant temperatures 25°C, alternating temperatures 25-15, 30-20 and 35-25°C) and photoperiod treatments at three levels (continuous darkness, 12-12 light and dark and 16-8 light and dark). Germination percentage, germination rate, germination uniformity, time to 10% germination, and time to 90% germination were evaluated by the Germin program.
Results: The results showed that all traits were affected by temperature and light. Velvetleaf seeds germinated better in the presence of light and alternating temperature. The percentage and rate of germination increased as temperature rised to 30°c and then decreased. However, seed reaction to the night temperature was higher than that of the day temperature. The highest germination percent (98 percent) was achieved under alternating temperature 25-15°C with 12-12h light-dark. In this study, the lowest time required for 10% and 90% germination and highest germination uniformity were observed under alternating temperatures 30-20°C in darkness.
Conclusion: According to the results of this experiment, velvetleaf seeds are able to germinate in a wide range of light and temperature conditions, although they germinate better in the presence of light and alternate temperatures. Therefore, plowing with a moldboard plow can stimulate germination and drain the soil seed bank.

Highlights:
1- Since light stimulates the germination of velvetleaf seeds, so no-tillage system is able to control this weed.
2- Increasing the environment temperature reduces the chance of germination of velvetleaf seeds.             


Iraj Rahimi, Ismail Asadi, Pejman Tahmasebi, Alireza Monfared, Ali Abbasi Suraki,
Volume 9, Issue 2 ((Autumn & Winter) 2023)
Abstract

Extended Abstract:
Introduction: Predation is the common fate of most seeds produced by plants. Loss of seeds due to predation can be harmful to plants and causes such species to become rare, as rare species are vulnerable to extinction through processes that disrupt the mechanisms of plant dispersal. Therefore, the purpose of this study was to investigate the effects of pre-dispersal seed predation on rare astragalus species and their common counterparts.
Materials and Methods: In order to investigate the effects of pre-dispersal seed predation, 12 species including 6 species with herbaceous life form (including three rare species (A. Caraganae, A. Heterophyllus and A. Holopsilus) and three common species (A. Angustiflorus, A. Curvirostris and A. Effusus) and 6 species with shrub life form (including three rare species (A. Cephalanthus, A. Camphylanthus and A. Cemerinus) and three common species (A. Verus, A. Susianus and A. Rhodosemius) were compared in 2018 and 2019. From each plant type, 20 and from each plant type 10 pods (for each plant type 200 pods), randomly selected and the parameters of area size, perimeter length, length, width, length-to-width ratio, circularity, and distance between IS and CG from the seed center were measured and compared for both pods and seeds of these species. Also, pod mass and seed mass, number of pods and seeds attacked by predators, number of healthy seeds, pod shape and seed shape of species were compared.
Results: The results of comparing the mean morphological characteristics of seeds between herbaceous and shrub astragalus species showed the highest and lowest area size, perimeter length, length, width, length-to-width ratio, circularity, and distance between IS and CG from the seed center, was related to common astragalus species. in the case of shrub species, most of the characteristics were related to common astragalus species, and the lowest characteristics were related to rare astragalus species. The results of morphological characteristics of pods between herbaceous and shrub species showed that the highest and lowest characteristics belonged to both groups of common and rare species. The results showed that the highest and lowest means of seed mass, number of damaged seeds, number of healthy seeds, and seed shape under the influence of pre-dispersal seed predation among herbaceous species showed that the highest and lowest means of seed mass, number of damaged seeds, belonged to common species. the highest and lowest numbers of healthy seeds and seed shapes belonged to rare species. Among the shrub astragalus species, the highest seed mass, the number of damaged seeds, the number of healthy seeds, and the seed shape were related to common astragalus species, and the lowest of these characteristics were related to rare astragalus species.
Conclusion: The overall results showed that the more species that can produce seeds of larger and smaller sizes, the better the distribution status. And the larger the seed and pod mass of the plant and the larger the shape, the more predators attack those species, but the amount of predator attacks does not lead to the rarity of the species.

Highlights:
  1. The role of pre-dispersal seed predation on rare and common astragalus species was investigated.
  2. Morphological characteristics of seeds and life forms of rare and common astragalus species were compared.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.