Search published articles


Showing 2 results for Taghizadeh

Nafise Taghizadeh, Gholamali Ranjbar, Ghorbanali Nematzadeh, Mohammadreza Ramzanimoghdam,
Volume 4, Issue 2 ((Autumn & Winter) 2018)
Abstract

Salinity is one of the most important factors limiting agricultural production. Cotton, as an oil-fiber plant, is one of the most important industrial plants and is sensitive to salinity, especially at germination and seedling stages. Therefore, in this study, 14 allotetraploid varieties of commercial and local cotton were selected. The study was carried out as factorial with a completely randomized design and three three replications, using the sandwich method. Germination tests were performed at three salinity levels of 0, 8 and 16 ds.m-1. Afterwards, root and shoot length, fresh and dry weight of root and shoot, germination percentage, allometric coefficient, seedling water percentage and seed vigor index were measured and stress tolerance indices were calculated based on yield (seedling dry weight) in stress and non-stress conditions. Given these indices, all cultivars were aalyzed at two levels of 8 and 16ds.m-1, using principal component analysis and biplot diagrams were drawn. Finally, the dendrogram classification of genotypes was plotted based on STI indices (stress tolerance index), SSI (stress susceptibility index), and the performance (dry weight plantlet) in stress and non-stress conditions. The result of variance analysis for genotype, salinity and salinity×genotype demonstrated that dry weight root, dry weight shoot, fresh weight root, stem length, vigor index seedling, allometric coefficient, dry weight seedling, and length seedling were significant in p-value 0.01, and fresh weight shoot, length root were significant in p-value 0.05. Clustering and the biplot of the genotypes based on STI and SSI indices at salinity levels of 8 and 16 ds.m-1 indicated that the Sepid and Giza genotypes were tolerant and that the Kashmar genotype was sensitive to salt levels at germination stage.
  
Highlights:
  1. The reaction of the cotton cultivars studied was different to levels of salinity stress.
  2. An increase in salt stress caused a significant reduction in the germination characteristics of cultivars of cotton studied.
  3. Bi-plot analysis and clustering based on STI and SSI indices turned out to be a suitable method for clustering cotton cultivars.

Reza Imam Dost , Davar Molazem, Reza Taghizadeh,
Volume 11, Issue 2 ((Autumn & Winter) 2025)
Abstract

Extended abstract
Introduction: Rice (Oryza sativa L.), as one of the world's most important cereals, serves as a staple food for more than one-third of the global population. This strategic crop plays a key role in the economies of many countries. Seed priming is a biotechnological tool and a simple, practical, effective, eco-friendly, and cost-efficient approach to enhancing a plant's tolerance to various environmental stresses and improving seed germination. This study was designed and conducted to investigate the germination and physiological responses of two rice cultivars under varying intensities and durations of electromagnetic field exposures.
Materials and Methods: In 2023, an experiment was conducted as a factorial arrangement in a completely randomized design at Islamic Azad University, Astara Branch, investigating the effects of electromagnetic field intensity (at four levels: 0, 50, 100, and 150 mT), exposure time (at three levels: 10, 50, and 100 minutes), and two rice cultivars (Tarom and Hashemi) with three replications. Rice seeds were treated inside a plastic bag under magnetic fields of varying intensities and durations. For the second phase of the experiment, plastic trays were used for seedling establishment, and healthy seedlings were then transferred to plastic pots filled with sand. After 25 days, the plants were evaluated for the desired traits.
Results: The analysis of variance results indicated that the effects of the magnetic field, time, cultivar, and their interactions were significant for most traits. The electromagnetic field at 100 mT for 50 minutes led to an increase in germination percentage compared to the control. In contrast, the treatment of 150 mT for 100 minutes caused a significant reduction in all germination-related traits. The highest values were observed under the 100 mT for 50-minute treatment, including germination percentage (98.80%), germination rate (12.533 seeds per day), radicle length (68.133 mm), plumule length (47.467 mm), seedling length (115.6 mm), radicle dry weight (0.715 mg), plumule dry weight (2.023 mg), seedling dry weight (2.738 mg), seedling length vigor index (11,422.96), seedling weight vigor index (270.6), chlorophyll-a (0.846 mg per gram fresh weight), chlorophyll-b (0.96 mg per gram fresh weight), and carotenoids (0.44 mg per gram fresh weight).
Conclusion: The electromagnetic field had a significant effect on germination-related traits and physiological characteristics, including germination percentage, germination rate, and chlorophyll content, leading to an increase in these indices. In the present study, the 100 mT treatment for 50 minutes improved seedling vigor in terms of both length and weight. Based on these findings, magnetopriming within the studied treatment range enhances germination and improves rice plant establishment by increasing chlorophyll levels.

Highlights:
  1. The effect of the magnetic field on the germination and physiological characteristics of rice seeds was investigated.
  2. Seed priming at 100 mT for 50 minutes increased chlorophyll and carotenoid content.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.