(Autumn & Winter)                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


Gonbad Kavous University , eg.alamdari@gonbad.ac.ir
Abstract:   (1097 Views)
Extended abstract
Introduction: Borage plant (Caccinia macranthera) belongs to the family of Boraginaceae. Botanically, it is an annual, herbaceous, and wild plant. Secondary metabolites are often limited to a small group of plants within a species whose bioactive compounds, unlike primary metabolites, are found in specific organs or phenological stages of plants. Borage plant shows potent antioxidant, antibacterial and medicinal properties and it has high biomass in the arid and semi-arid regions of the eastern areas of the Golestan province. Usually, the release of allelopathic compounds from some wild plants and weeds into the environment, poses a serious challenge to the germination, morphological, and physiological characteristics of crops and even weeds. This study was conducted to evaluate the allelopathic potential of C. macranthera on germination, seedling growth, physiological, biochemical characteristics, and antioxidant activity of Pisum sativum as a plant sensitive to allelochemicals.
Materials and Methods: The experiment was carried out based on a completely randomized design with three replications in 2024. For extracting, 5 g of the whole powdered C. macranthera (by weight) was mixed with 100 mL of distilled water (by volume). Then different concentrations (i.e., 20, 40, 60, 80 and 100%) were prepared from the extract obtained from the base solution. Distilled water was also used as a control sample.

Results: The results showed that germination characteristics such as percentage and rate of germination, length of radicle, plumule and seedling, allometric coefficient, seedling length vigor index, dry weight of radicle, plumule and seedling, seedling weight vigor index in addition to the total chlorophyll pigment content of P. sativum were significantly reduced under different concentrations of C. macranthera. In contrast, the mean time to 50% germination of P. sativum increased with increasing the concentration of aqueous extract of C. macranthera. So that the difference in the effect of different concentrations of C. macranthera was dependent on their concentration threshold. This may be due to the accumulation of more harmful compounds present in the aqueous extract with increasing concentration, especially alkaloids and phenol. The physiological characteristics such as adaptive osmolytes (proline content and soluble sugars), total phenol, and antioxidant activity in P. sativum radicle and plumule had an increasing trend under allelopathic stress of C. macranthera aqueous extract. Therefore, the decrease in germination characteristics and seedling growth of pea can be related to the insufficiency of these protectors against high oxidative stress of C. macranthera.
Conclusions: Considering the demonstrated harmful effects of wild plant of C. macranthera and its high biomass in arid and semi-arid regions, especially in the east of Golestan province. It may be possible to use the bioactive compounds in this plant as an environmentally friendly herbicide. Further studies are needed to confirm its positive effects on other species before its application as a bioherbicide.

Highlights:
  1. The difference in the accumulation of allelopathic compounds of the aqueous extract from C. macranthera causes a different reduction effect in morphophysiological traits Pisum sativum.
  2. The bioactive compounds in C. macranthera can be a suitable option for the production of environmentally friendly herbicide.
     
Type of Study: Research | Subject: Seed Physiology
Received: 2024/07/7 | Revised: 2025/05/31 | Accepted: 2024/11/20

References
1. Abdi, S. and Abedi, R. 2019. Nonlinear regression modelling of rye and foxtail germination behavior under allelopathic effects of peppermint, chicory and sage. Journal of Plant Research, 32(3): 573- 581.
2. Abdul-Baki, A.A. and Anderson, J.D. 1973. Vigor determination in soybean seed by multiple criteria. Journal of Crop Science, 13: 630-633. [DOI:10.2135/cropsci1973.0011183X001300060013x]
3. Alizadeh, Y., Zeidali, E. and Hassaneian Khoshro, H. 2019. Allelopathic effects of mustard (Sinapis arvensis) on germination, morphological and biochemical characteristics of barley (Hordeum vulgare). Iranian Journal of Seed Research, 5(2): 59-71. [In Persian] [DOI:10.29252/yujs.5.2.59]
4. Amoo, S.O., Ojo, A.U. and Van Staden, J. 2008. Allelopathic potential of Tetrapleura tetraptera leaf extracts on early seedling growth of five agricultural crops. South African Journal of Botany, 74: 149-152. [DOI:10.1016/j.sajb.2007.08.010]
5. Arabshahi- Delouee, S. and Urooj, A. 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102: 1233-1240. [DOI:10.1016/j.foodchem.2006.07.013]
6. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-15. [DOI:10.1104/pp.24.1.1] [PMID] []
7. Bates, L.S., Walderen, R.D. and Taere, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
8. Behdad, A., Abrishamchi, P. and Jankju, M. 2015. Relation to phonology, phenolics content and allelopathic effect of Artemisia khorassanica Krasch. on growth and physiology of Bromus kopetdaghensis Drobov. Journal of Plant Research (Iranian Journal of Biology), 28(2): 243-256. [In Persian]
9. Bogatek, R. 2005. Sunflower allelochemicals mode of action in germinating mustard seeds. Allelopathy Congress. Australia, May 4-7, pp. 277-279.
10. Bond, W. and Turner, R. 2006. The biology and non- chemical control of common amaranth (Amarantus retroflexus L.). New York. John Wiley and Sons, INC.
11. Booth, D.T. and Sowa, S. 2001. Respiration in dormant and non- dormant bitterbrush seeds. Journal of Arid Environment, 48: 35-39. [DOI:10.1006/jare.2000.0737]
12. Brand- Williams, W., Cuvelier, M.E. and Berset, C.L.W.T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1): 25- 30. [DOI:10.1016/S0023-6438(95)80008-5]
13. Caceres, A. 2000. Calidad de la material prima para la elaboracion de productos fitofarma ceuticas. Primer Congreso International FITO 2000 Por la investigacion, conservacion y diffusion del conocimiento de las plantas medicinals 27-30 de septiembre, Lima, Peru.
14. Cayuela, M.L., Millner, P.D., Meyer, S.L.F. and Roig A. 2008. Potential of olive mill waste and compost as biobased pesticides against weeds, fungi and nematodes. Science of the Total Environment, 399: 11-18. [DOI:10.1016/j.scitotenv.2008.03.031] [PMID]
15. Chaudhary, G., Goyal, S. and Poonia, P. 2010. Lawsonia inermis Linnaeus: A phytopharmacological review. International Journal of Pharmaceutical Sciences and Drug Research, 2(2): 91-98. [DOI:10.25004/IJPSDR.2010.020202]
16. Chen, M. and Chory, J. 2011. Phytochrome signaling mechanism and the control of plant development. Trends in Cell Biology, 21(11): 664-671. [DOI:10.1016/j.tcb.2011.07.002] [PMID] []
17. Cruz- Ortega, R., Anaya, A.L., Hernandez- Bautista, B.E. and Laguna- Hernandez, G. 1998. Effects of allelochemical stress produced by Sicyos deppei on seedling root ultraestructure of Phaseolus vulgaris and Cucurbita ficifolia. Journal of Chemical Ecology, 24: 2039- 2057. [DOI:10.1023/A:1020733625727]
18. Djanaguiramant, M., Vaidyanathan, R., Sheeba, A., Durga Devi, D. and Bangarusamy, U. 2005. Physiological response of Eucalyptus globules leaf leachate on seedling physiology of rice, sorghum and blackgram. International Journal of Agriculture and Biology, 7(1): 35- 38.
19. El- Araby, M.M., Moustafa, S.M.A., Ismail, A.I. and Hegazi, A.Z.A. 2006. Hormone and phenol levels during germination and osmopriming of tomato seeds, and associated variations in protein patterns and anatomical seed features. Acta Agronomica Hungarica, 54(4): 441-457. [DOI:10.1556/AAgr.54.2006.4.7]
20. Ellis, R.H. and Roberts, E.H. 1981. The quantification of aging and survival in orthodox seeds. Seed Science and Technology, 9: 377- 409.
21. El-Shora, H.M., Abd El- Gawad A.M. 2015. Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. allelopathy. Fresenius Environmental Bulletin Journal, 24: 386-393.
22. Esfandiari, S., Dadkhah, D. and Rezvani, R. 2023. Allelopathy effect of Zygophyllum euryterum on seed germination and seedling growth of wheat (Triticum aestivum) and Convolvulus arvensis. Iranian Journal of Seed Science and Research, 10(2): 21-36. [In Persian]
23. Fitter, A. 2003. Making allelopathy respectable. Science, 301(5638): 1337-1338. [DOI:10.1126/science.1089291] [PMID]
24. Ghanbari, H., Ghanbari, R., Delazar, A., Ebrahimi, S.N., Memar, M.Y., Moghadam, S.B., Hamedeyazdan. S. and Nazemiyeh, H. 2023. Caccinia macranthera Brand var. macranthera: Phytochemical analysis, phytotoxicity and antimicrobial investigations of essential oils with concomitant in silico molecular docking based on OPLS force- field. Toxicon, 234, e107291.‏ [DOI:10.1016/j.toxicon.2023.107291] [PMID]
25. Ghareman, A. 1996. General code of families and genera of flora of Iran. The publication of Research Institute of Forests and Rangelands of Iran, 222 p. [In Persian]
26. Ghasemi Khalil Abad, M. and Akbarlo, M. 2016. Classification of medicinal plants based on chemical compounds and their use (case study: Kohsarakh region, Razavi Khorasan province). The 1st national conference of medicinal, aromatic and spicy plants, Gonbad Kavous University, Apr 20, 2016. pp. 1-7. [In Persian]
27. Gholami, Sh. and Amini Dehaghi, D. 2022. The effect of priming with different concentrations of selenium on germination indices of quinoa seeds and seedlings. Journal of Crops Improvement, 24(1): 85-95. [In Persian]
28. Ghorbani, R., Rashed Mohasel, M.H., Hosseini, A., Mosavi, K. and Haj Mohammadnia Ghalibaf, K. 2009. Sustanable weed management. Publishers University of Mashhad, Mashhad. [In Persian]
29. Han, C.M., Pan, K.W., Wu, N., Wang, J.C. and Li, W. 2008. Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. Scientia Horticulturae, 116: 330-336. [DOI:10.1016/j.scienta.2008.01.005]
30. Hardgree, S.P., and Van Vactor, S.S. 2000. Germination and emergence of primed grass seeds under field and simulated- field temperature regimes. Annals of Botany Journal, 85: 379-390. [DOI:10.1006/anbo.1999.1076]
31. Hartman, H., Kester, D. and Davis, F. 1990. Plant propagation, principle and practices. Prentice Hall International Editions.
32. Hatami Hampa, A., Javanmard, A., Alebrahim, M. and Sofalian, O. 2018. Allelopathic effects of aqueous extracts from sorghum (Sorghum bicolor L.) and Russian knapweed (Acroptilon repens L.) on seedling growth and enzymes activity of wheat, sugar beet, common lambsquarters and redroot pigweed. Journal of Iranian Plant Protection Research, 32(1): 101-119. [In Persian]
33. Imam, H., Mahbub, N.U., Forhad Khan, M.D., Hana, H.K. and Sarker, M.R. 2013. Alpha amylase enzyme inhibitory and anti- inflammatory effect of Lawsonia inermis L. Pakistan Journal of Biological Sciences, 16 (32): 1796-1800. [DOI:10.3923/pjbs.2013.1796.1800] [PMID]
34. Inderjit, W.J. and Duke, S.O. 2003. Ecophysiological aspects of allelopathy. Planta, 217(4):125-132. [DOI:10.1007/s00425-003-1054-z] [PMID]
35. International Seed Testing Association. 2003. ISTA Handbook on Seedling Evaluation. 3rd edition. International Seed Testing Association publisher, 119 p.
36. Ivan, C., Sulmon, C., Gwenola, G. and Amrani, A. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. The Journal of Experimental Botany, 57(3): 449-459. [DOI:10.1093/jxb/erj027] [PMID]
37. Jiny Varghese, J., Silvipriya, K.S., Resmi, S. and Jolly, C.I. 2010. Lawsonia inermis (Henna): a natural dye of various therapeutic uses- a review. Inventi Journals, 1(1): 1-5.
38. Kao, C.H. 1981. Senescense of rice leaves. VI. Comparative study of the metabolic changes of senescing turgid and water- stressed excised leaves. Plant and Cell Physiology, 22: 683-685.
39. Khoje, V.M. 2020. Herbal Caccinia macranthera for making traditional dishes in Turkmen Sahara. Makhtumaghli Faraghi Publications. Gorgan province, Iran, 24 p. [In Persian]
40. Kochert, G. 1978. Carbohydrate determination by the phenol sulfuric acid method: 56-97. In: Helebust, J.A. and craig, J.S. (Eds.). Hand book of physiological method. Cambridge University Press. Cambridge.
41. Kohli, R.K., Singh, H.P. and Batish, D.R. 2001 Allelopathy in agro- ecosystems. Food Products Press, New York.
42. Lal, P. and Singh, Y.V. 2008. Effect of auxins on rooting and sprouting behaviour of stem cuttings of henna (Lawsonia inermis). Indian Journal of'Agricultural Sciences, 78(12): 1013-1017.
43. Li, Y., Sun, Z., Zhuang, X., Xu, L., Chen, S. and Li, M. 2003. Research progress on microbial herbicides. Crop Protection, 22: 247-252. [DOI:10.1016/S0261-2194(02)00189-8]
44. Macias, F.A., Molinillo, J., Varela, R.M. and Galindo, J.C.G. 2007. Allelopathy a natural alternative for weed control. Pest Management Science, 63: 327-348. [DOI:10.1002/ps.1342] [PMID]
45. Malick, C.P. and Singh, M.B. 1980. In plant enzymology and histo enzymologhy. Kalyani Publishers, New Dehli, 286 p.
46. Mardani, R., Yousefi, A. R., Fotovat, R. and Oveisi, M. 2014. New bioassay method to find the allelopathic potential of wheat cultivars on rye (Secale cereale L.) seedlings. Allelopathy Journal, 33(1), 53-62.
47. Meighani, F. 2003. Allelopathy from concept to application. Partov Vaghe publisher, Tehran, Iran. [In Persian]
48. Mendoza, N. and Salazar, S. 2022. Cytogenotoxicity of fifth- generation quaternary ammonium using three plant bioindicators. Environmental Toxicology and Pharmacology, 95: e 103972. [DOI:10.1016/j.etap.2022.103972] [PMID]
49. Miri, H.R. and Armin, M. 2013. The use of plant water extracts in order to reduce herbicide application in wheat. European Journal of Experimental Biology, 3(5): 155-164.
50. Obembe, O. and Agboola, D.A. 2008. Seed pretreatments enhance germination in Occimum gratissimum (lameaceae). Life Science Journal, 5(1): 46-48.
51. Ohadi, H., Rahimian Mashhadi, H., Tavakkol Afshari, R. and Baheshtian, M. 2010. Modelling the effect of light intensity and duration of exposure on seed germination of Phalaris minor and Poa annua. Weed Research, 50 (3): 209-217. [DOI:10.1111/j.1365-3180.2010.00769.x]
52. Pessarkli, M. 1999. Hand book of plant and crop stress. Marcel Dekker Inc, 697 p.
53. Saberi, M., Shariyari, A., Jafari, M., Tarnian, F. and Safari, H. 2012. Allelopathic effect of Thymus kotschyanus on seed germination and initial growth of Bromus inermis and Agropyron elongatum. Watershed Management Research Journal (Pajouhesh & Sazandegi), 9: 18- 25. [In Persian]
54. Rice, E.L. 1984. In: Allelopathy. Second edition. Academic Press, New York, NY, 442 p.
55. Saraei, R., Lahouti, M. and Ganjeali, A. 2012. Evaluation of allelopathic effects of eucalyptus (Eucalyptus globules Labill.) on germination, morphological and biochemical criteria of barley (Hordeum vulgare L.) and flixweed (Descurainia sophia L.). Journal of Agroecology, 4(3): 215-222. [In Persian]
56. Shah, S.B., Sartaj, L., Ali, F., Shah, S.I.A. and Khan, M.T. 2018. Plant extracts are the potential inhibitors of α-amylase: a review. MOJ Bioequivalence and Bioavailability, 5(5):270-273. [DOI:10.15406/mojbb.2018.05.00113]
57. Sharma, A., Jha, A.M., Dubey, R.S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plant under stressful conditions. Journal of Botany, 26: 1-26. [DOI:10.1155/2012/217037]
58. Soltani, A. and Torabi, B. 2014. Design and analysis of agricultural experiments (with SAS programs). Jehad Daneshgahi Mashhad Press, Mashhad, Iran, 431 p. [In Persian]
59. Turc, M.A., and Tawaha, A.M. 2002. Inhibitory effects of aqueous extracts of black mustard on germination and growth of lentil. Pakistan Journal of Agronomy, 1: 28-30. [DOI:10.3923/ja.2002.28.30]
60. Tutenocakli, T., Coskun, Y., Tas, I., Oral, A. and Turker, G. 2022. Allelopathic effects of some essential oil components on germination and seedling growth of wheat. Current Trends in Natural Sciences, 11(21): 513-520. [DOI:10.47068/ctns.2022.v11i21.055]
61. Vafaei, M., Seyyed Nejad, S.M., Gilani, A. and Saboora, A. 2015. A study on allelopathic effect of olive pomace (Olea europaea L.) on some biochemical characteristics of three seedlings wheat cultivars (Triticum aestivum L.). Journal of Plant Research, 28: 243-256. [In Persian]
62. Varner, J.E. 1964. Gibberlic acid controlled synthesis of α- amylase in barley endosperm. Plant Physiology, 39: 413-415. [DOI:10.1104/pp.39.3.413] [PMID] []
63. Zeng, R.S., Mallik, A.U. and Luo, S.M. 2008. Allelopathy in Sustainable Agriculture and Forestry; Springer Science+Business Media, LLC, New York, USA. [DOI:10.1007/978-0-387-77337-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.