Volume 9, Issue 1 ((Spring and Summer) 2022)                   Iranian J. Seed Res. 2022, 9(1): 189-202 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani R, Movafeghi A, Ganjeali A, Nabati J. (2022). Investigating the germination characteristics of Chickpea (Cicer arietinum) in response to titanium dioxide nanoparticles priming and drought stress. Iranian J. Seed Res.. 9(1), : 12 doi:10.52547/yujs.9.1.189
URL: http://yujs.yu.ac.ir/jisr/article-1-505-en.html
Associate Professor, Department of Biology and Research Institute of Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran , ganjeali@um.ac.ir
Abstract:   (2141 Views)
Extended Abstract
Introduction: Drought stress, as abiotic and multidimensional stress, has severe effects on plant growth. One of the new approaches in the management of drought stress is the use of nanoparticles. Nanoparticles infilterate the seeds and increase nutrient and water uptake and ultimately, improve germination. The present research was conducted to evaluate the effects of titanium dioxide nanoparticles on chickpea plant germination factors to modify the negative effects of drought stress.
Materials and Methods: A factorial experiment was conducted in a completely randomized design with four replications on chickpea seeds of Arman cultivar in the Plant Sciences Research Institute of the Ferdowsi University of Mashhad in 2019. Seeds were primed with concentrations of 0, 5, 10, 15, and 20 mg L-1 titanium dioxide for 24 hours. The seeds were cultured in sterilized Petri dishes. Drought stress was applied using polyethylene glycol 6000 with 0, -2, -4 and -8 bar osmotic potentials.
Results: The analysis of variance results showed that the interaction effect of drought stress and titanium dioxide nanoparticles was significant on germination rate, the number of normal seedlings, seed vigor index, germination index, length of seedling, radicle length, and radicle dry weight. All germination traits were inhibited as a result of drought stress. On the other hand, the presence of titanium dioxide nanoparticles partially decreased this inhibition in some traits. Germination percentage, germination rate, normal seedling percentage, seed vigor index, germination index, epicotyl length, radicle length and radicle dry weight decreased as a result of stress.
Conclusion: At all drought stress levels, the concentration of titanium dioxide nanoparticles up to 20 mg L-1 significantly improved traits such as germination percentage, seed vigor index, epicotyl length, and epicotyl dry weight. It seems that nanoparticles can stimulate cell activity and increase the transformation of reserves to translocatable material and consequently, improve germination characteristics. Thus, the application of titanium dioxide nanoparticles up to a concentration of 20 mg L-1 can partially reduce the negative effects of drought stress on the germination characteristics of chickpeas.

Highlights:
1- Germination percentage and seed vigor index of chickpea increased with the application of titanium dioxide nanoparticles up to 20 mg l-1 at all drought stress levels.
2- The radicle length and dry weight of chickpea increased by titanium dioxide nanoparticles.
3- The negative effects of drought stress on chickpea seed germination decreased by titanium dioxide nanoparticles.
Article number: 12
Full-Text [PDF 659 kb]   (538 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2020/11/7 | Revised: 2024/02/21 | Accepted: 2021/05/1 | ePublished: 2022/12/11

References
1. Abdul-Baki, A.A. and Anderson, J.D. 1973. Vigor determination in soybean by multiple criteria. Crop Science, 13(6): 630-633. [DOI:10.2135/cropsci1973.0011183X001300060013x]
2. Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L. and Patil, B.S. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1): 1-16. [DOI:10.1038/s41598-020-61696-7] [PMID] [PMCID]
3. Adhikari, T., Kundu, S. and Rao, A.S. 2013. Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). International Journal of Agricultural Science and Technology, 4(8): 809-816.
4. Agrawal, R.L. 1997. Seed Technology. Oxford and IBH Publishing Co, PUT.LTD, New Delhi. 552p.
5. Bassett, A.R., Tibbit, C., Ponting, C.P. and Liu, J.L. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Reports, 4(1): 220-228. [DOI:10.1016/j.celrep.2013.06.020] [PMID] [PMCID]
6. Castiglione, M.R., Giorgetti, L., Geri, C. and Cremonini, R. 2011. The effects of nano- TiO2 on seed germination, development and mitosis of root tip cells of (Vicia narbonensis L.) and (Zea mays L). Journal of Nanoparticle Research, 13(6): 2443-2449. [DOI:10.1007/s11051-010-0135-8]
7. Cox, J.D., Silveiro, I. and Garcia de Abajo, F.J. 2016. Quantum effects in the nonlinear response of graphene plasmons. ACS Nano, 10(2): 1995-2003. [DOI:10.1021/acsnano.5b06110] [PMID]
8. Dolatabadi, A., Sani, B. and Moaveni, P. 2015. Impact of nanosized titanium dioxide on agronomical and physiological characteristics of annual medic (Medicago scutellata L.). Cercetari Agronomice in Moldova, 48(3): 53-61. [DOI:10.1515/cerce-2015-0041]
9. Ghasemi Golazani, K. and Dalil, B. 2011. Germination and seed vigor tests. Publications Jahad Daneshgahi of Mashhad.104p. [In Persian].
10. Haghighi, M. and Daneshmand, B. 2013. Comparing the effects of titanium and nano-titanium on growth and photosynthetic changes of tomato in hydroponic culture. Journal of Science and Technology of Greenhouse Culture, 4(13): 73-80. [In Persian with English Summary].
11. Hatami, M., Ghorbanpour, M. and Salehiarjomand, H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological Environment, 8(22): 53-59.
12. ISTA. 2008. International Rules for Seed Testing Edition. International Seed Testing Association, Bassersdorf, Switzerland.
13. Javanmard, Z., Tabari Koochaksaraee, M. and Ahmadloo, F. 2013. Effect of osmopriming on germination and physiological qualitative characteristic of Pinus eldarica Medw seed under drought stress. Journal of Plant Research (Iranian Journal of Biology), 27(3): 395-405. [In Persian with English Summary].
14. Kafi, M. and Rahimi, Z. 2011. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition, 57(2): 341-347. [In Persian with English Summary]. [DOI:10.1080/00380768.2011.567398]
15. Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Wang, Q., Yuan, Y. and Liao, M. 2008. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid invivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232 (2): 292-301. [DOI:10.1016/j.taap.2008.06.026] [PMID]
16. Lin., D. and Xing, B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2): 243-253. [DOI:10.1016/j.envpol.2007.01.016] [PMID]
17. Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2):139-158. [DOI:10.1016/j.abb.2005.10.018] [PMID]
18. Malik, S., Ashraf, M., Arshad, M. and Malik, T.A. 2015. Effect of ascorbic acid application on physiology of wheat under drought stress. Pakistan Journal of Agricultural Sciences, 52(1). 209-217
19. Marambe, B. and Ando, T. 1992. Phenolic acids as potential seed germination-inhibitors in animal-waste composts. Soil Science and Plant Nutrition, 38(4): 727-733. [DOI:10.1080/00380768.1992.10416703]
20. Masoudi, A., Hosseini, H.R.M., Shokrgozar, M.A., Ahmadi, R. and Oghabian, M.A. 2012. The effect of poly (ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. International Journal of Pharmaceutics, 433(1-2):129-141. [DOI:10.1016/j.ijpharm.2012.04.080] [PMID]
21. Mathew, S.S., Sunny, N.E. and Shanmugam, V. 2021. Green synthesis of Anatase Titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorganic Chemistry Communications, 126: 108485. [DOI:10.1016/j.inoche.2021.108485]
22. Matthews, S. and Khajeh Hosseini, M. 2007. Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays L.). Seed Science Technology, 35: 200-212. [DOI:10.15258/sst.2007.35.1.18]
23. Michel, B.E. and Kaufmann, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5): 914-916. [DOI:10.1104/pp.51.5.914] [PMID] [PMCID]
24. Moraru, C.I., Panchapakesan, C.P., Huang, Q., Takhistov, P., Liu, S. and Kokini, J.L. 2003. Nanotechnology: a new frontier in food science understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Nanotechnology, 57(12): 24-29.
25. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. 2010. Nanoparticulate material delivery to plants. Plant Science, 179(3): 154-163. [DOI:10.1016/j.plantsci.2010.04.012]
26. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N. and Behra, R. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42(23): 8959-8964. [DOI:10.1021/es801785m] [PMID]
27. Ogunkunle, C.O., Gambari, H., Agbaje, F., Okoro, H.K., Asogwa, N.T., Vishwakarma, V. and Fatoba, P.O. 2020. Effect of low-dose nano titanium dioxide intervention on cd uptake and stress enzymes activity in cd-stressed cowpea [Vigna unguiculata (L.) Walp] plants. Bulletin of Environmental Contamination and Toxicology, 104(5):619-626. [DOI:10.1007/s00128-020-02824-x] [PMID]
28. Raskar, S.V. and Laware, S.L. 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal Current Microbiol Applied Science, 3(2): 467-473.
29. Rico, C.M., Morales, M.I., McCreary, R., Castillo-Michel, H., Barrios, A.C., Hong, J. and Peralta-Videa, J.R. 2013. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environmental Science and Technology, 47(24): 14110-14118. [DOI:10.1021/es4033887] [PMID]
30. Singh, K.B. and Saxena, M.C. 1999. Chickpeas (The Tropical Agriculturalist). MacMilan Education Ltd., London. 134p.
31. Tarrahi, R., Khataee, A., Movafeghi, A., Rezanejad, F. and Gohari, G. 2017. Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on Lemna minor. Chemosphere, 181: 655-665. [DOI:10.1016/j.chemosphere.2017.04.142] [PMID]
32. Zhang, R., Cheng, X., Hou, P. and Ye, Z. 2015. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials, 81: 35-41. [DOI:10.1016/j.conbuildmat.2015.02.003]
33. Zheng, L., Hong, F., Lu, S. and Liu, C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1): 83-91 [DOI:10.1385/BTER:104:1:083] [PMID]
34. Zhu, H., Han, J., Xiao, J.Q. and Jin, Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6): 713-717. [DOI:10.1039/b805998e] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.