Volume 7, Issue 2 ((Autumn & Winter) 2021)                   Iranian J. Seed Res. 2021, 7(2): 135-150 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare A, Elahifard E, Asadinejad Z. Comparison of Ecological Aspects of Seed Germination of Syrian mesquite (Prosopis farcta) Ecotypes of Khuzestan and Fars Provinces. Iranian J. Seed Res.. 2021; 7 (2) :135-150
URL: http://yujs.yu.ac.ir/jisr/article-1-475-en.html
Agricultural Sciences and Natural Resources University of Khuzestan , ahmadzare@ asnrukh.ac.ir
Abstract:   (482 Views)
 
Extended Abstract
Introduction: Syrian mesquite is introduced as a weed in wheat and barley fields, saffron, cotton and vegetables, and in orchards. The spread of this weed in different climates raises the question of how much native plant conditions can affect germination characteristics. Therefore, the purpose of this study was to evaluate the effect of native plant conditions on germination characteristics in response to environmental stresses (temperature, salinity, and drought).
Materials and Methods: To investigate dormancy elimination and germination response thresholds of two Syrian mesquite ecotypes (Khuzestan and Fars) to environmental factors (temperature, salinity, and drought), four separate experiments were carried out as factorial based on completely block design with three replications at Agricultural Sciences and Natural Resources University of Khuzestan. Treatments included immersion the seeds with concentrated sulfuric acid (96%) (0, 10, 15, 20, 25, and 30 min), different temperature (0, 5, 10, 15, 20, 25, 30, 35, 40, and 45 °C), salinity levels (0, 100, 200, 300, 400, 500, and 600 mM), and different levels of drought stress (0, 0.2, 0.4, 0.6, 0.8, 1 and 1.2 MPa).
Results: The time required for immersion of seeds in sulfuric acid to dormancy breaking for two ecotypes was different. The estimated parameters indicated time of immersion in sulfuric acid to reach 50% germination in the Khuzestan ecotype (11.38 min) was longer than the Fars ecotype (8.10 min). The Khuzestan ecotype was also able to germinate (45%) at 40 ° C, whereas germination in the Fars ecotype was stopped at this temperature. Germination rate and cumulative germination percentage at temperatures below 25 ° C were higher in Fars ecotype than in the Khuzestan ecotype. The results of the salinity experiment showed that 50% reduction in seed vigor index, final germination percentage, and germination rate in the Fars ecotype were 167.48, 404.46, and 307.02 mM respectively and in the Khuzestan ecotype were 0.89. 229, 380.16, and 299.57 mM, respectively. For drought treatments, 50% reduction in final germination percentage, seed vigor index, and germination rate in Fars ecotype were -0.50, -0.38, and -0.39 MPa, respectively, and in Khuzestan ecotype were -0.46, -0.46, and -0.50 MPa, respectively.
Conclusion: Overall, the results showed that native plant climatic conditions (latitude and longitude, elevation, rainfall, and temperature) can affect the degree of seed dormancy, resistance to environmental stresses such as temperature, salinity, and drought.

 
Highlights:
1- Seed germination response thresholds of two ecotypes of Fars and Khuzestan for exposure to temperature and drought and salinity stresses were compared.
Full-Text [PDF 525 kb]   (54 Downloads)    
Type of Study: Research | Subject: Seed Ecology
Received: 2020/03/9 | Accepted: 2020/10/4

References
1. Abin, A. and Eslami, S.V. 2009. Influence of maternal environment on salinity and drought tolerance of annual Sowthistle (Sonchus oleraceus L.) at germination and emergence stage. Weed Research, 1(2):1-12. [In Persian with English Summary].
2. Bagheri, M., Yeganeh, H., Esfahan, E.Z. and Savadroodbari, M.B. 2011. Effects of water stress on seed germination of Thymus koteschanus Boiss and Thymus daenensis Celak. Middle East Journal of Scientific Research, 8(4): 726-73.
3. Bakhshandeh, E., Bradford, K.J., Pirdashti, H., Vahabinia, F. and Abdellaoui, R. 2020. A new halothermal time model describes seed germination responses to salinity across both sub-and supra-optimal temperatures. Acta Physiologiae Plantarum, 42(8): 1-15. [DOI:10.1007/s11738-020-03126-9]
4. Baskin, C.C. and Baskin, J.M. 1998. Seeds: Ecology, Biogeography, and Evolution of Seed Dormancy and Germination. Academic Press, San Diego, CA. [DOI:10.1016/B978-012080260-9/50003-8]
5. Bradford, K.J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2): 248-260. [DOI:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2]
6. Chauhan, B.S. and Johnson, D.E. 2010. The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy, 105: 221-262. [DOI:10.1016/S0065-2113(10)05006-6]
7. Copeland, L.O. and McDonald, M.B. 2001. Principles of seed science and technology. Springer Science & Business Media. [DOI:10.1007/978-1-4615-1619-4]
8. DiTommaso, A. 2004. Germination behavior of common ragweed (Ambrosia artemisiafolia) populations across a range of salinities. Weed Science, 52(6): 1002-1009. [DOI:10.1614/WS-04-030R1]
9. Donohue, K. 2009. Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society of London B-Biological Sciences, 364: 1059-1074. [DOI:10.1098/rstb.2008.0291] [PMID] [PMCID]
10. Ebadi, S.Z., Golzardi, F., Vaziritabar, Y., Vaziritabar, Y. and Ebadi, M.S. 2014. Environmental maternal effects on drought and salinity tolerance of Iranian knapweed (Centaurea depressa M. Bieb.) at germination and seedling growth stage. Indian Journal of Fundamental and Applied Life Sciences, 4(3): 157-166.
11. Ebrahimi, E., Eslami, V., Jami Ahmadi, M. and Mahmoodi, S. 2011. Studying the effect of different environmental factors on germination of (Ceratocarpus arenarius L. Bluk) seed. Iranian Journal of Weed Science, 7(1): 45-59. [In Persian with English Summary].
12. El-Keblawy, A. and Al-Ansari, F. 2000. Effect of site of origin, time of seed maturation and seed age on germination behavior of Portulaca oleracea L. from old and new world. Canadian Journal of Botany, 78(3): 279-287. https://doi.org/10.1139/b00-001 [DOI:10.1139/cjb-78-3-279]
13. Esmaeili, A. and Eslami, S.V. 2010. Comparative evaluation of the effects of salinity and drought on germination and seedling growth of Barnyardgrass (Echinochloa crus-galli (L.) Beauv.) and Rice (Oryza sativa L.), and its relationship with their competition under stress conditions. Weed Research Journal, 2(1):29-42. [In Persian with English Summary].
14. Fagg, C.W. and Stewart, J.L. 1994. The value of Acacia and Prosopis in arid and semi-arid environments. Journal of Arid Environments, 27(1): 3-25. [DOI:10.1006/jare.1994.1041]
15. Fatholahi, M., Mohsenabadi, G., Tavakkol Afshari, R. and Mohammadvand, E. 2017. Effect of different levels of salinity and temperature on seed germination parameters German chamomile (Matricaria recutita). Iranian Journal of Field Crop Science, 47(3): 341-525. [In Persian with English Summary].
16. Fenner, M. 1991. The effects of parent environment on seed germinability. Seed Science Research, 1(2): 75-84. [DOI:10.1017/S0960258500000696]
17. Foley, M.E. 2001. Seed dormancy: An update on terminology, physiological genetics, and quantitative traits loci regulating germinability. Weed Science, 49(3): 305-317. [DOI:10.1614/0043-1745(2001)049[0305:SDAUOT]2.0.CO;2]
18. Ghaffarri, R., Meighani, F. and Salimi, H., 2014. Germination ecophysiology of Mesquite (Prosopis farcta L.) weed. Nova Biologica Reperta, 1(1): 23-33. [In Persian with English Summary]. [DOI:10.29252/nbr.1.1.23]
19. Golzardi, F., Vazan, S., Moosavinia, S. and Tohidloo, G. 2012. Effects of salt and drought Stresses on germination and seedling growth of swallow wort (Cynanchum acutum L.). Research Journal of Applied Sciences, Engineering and Technology, 4(21): 4524-4529.
20. Gorecki, M.J., Long, R.L., Flematti, G.R. and Stevens, J.C. 2012. Parental environment changes the dormancy state and karrikinolide response of Brassica tournefortii seeds. Annals of Botany, 109(7): 1369-1378. [DOI:10.1093/aob/mcs067] [PMID] [PMCID]
21. Guma, I.R., Padrón-Mederos, M.A., Santos-Guerra, A. and Reyes-Betancort, J.A. 2010. Effect of temperature and salinity on germination of Salsola vermiculata L. (Chenopodiaceae) from Canary Islands. Journal of arid Environments, 74(6): 708-711. [DOI:10.1016/j.jaridenv.2009.10.001]
22. Gutterman, Y. 1993. Seed germination in desert plants. Adaptations of Desert Organisms. Springer, Berlin. [DOI:10.1007/978-3-642-75698-6] [PMCID]
23. Gutterman, Y. 1994. Germinability under natural temperatures of Lactuca serriola L. achenes matured and collected on different dates from a natural population in the Negev desert highlands. Journal of Arid Environments, 28(2): 117-127. [DOI:10.1016/S0140-1963(05)80042-4]
24. Jensen, M. and Eriksen, E.N. 2001. Development of primary dormancy in seeds of Prunus avium during maturation. Seed Science and Technology, 29(2): 307-320.
25. Khajeh Hosseini, M., Naghizadeh, M., Hosseini, S.A. and Rashed Mohassel, M.H. 2017. Study of seed germination and dormancy of Prosopis farcta, Launaea acanthoides and Cressa cretica in pistachio orchards of Rafsanjan. Iranian Journal of Seed Science and Technology, 5(2): 199-213. [In Persian with English Summary]. [DOI:10.29252/yujs.3.2.71]
26. Li, Y.P. and Feng, Y.L. 2009. Differences in seed morphometric and germination traits of Crofton weed (Eupatorium adenophorum) from different elevations. Weed Science, 57(1):26-30. [DOI:10.1614/WS-08-068.1]
27. Luzuriaga, A.L., Escudero, A. and Perez-Garcia, F. 2006. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Research, 46(2): 163-174. [DOI:10.1111/j.1365-3180.2006.00496.x]
28. Meyer, S.E. and Allen, P.S. 1999. Ecological genetics of seed germination regulation in Bromus tectorum L. II. Reaction norms in response to a water stress gradient imposed during seed maturation. Oecologia, 120(1): 35-43. https://doi.org/10.1007/s004420050830 [DOI:10.1007/s004420050829] [PMID]
29. Michel, B.E. and Kaufmann, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5): 914-916. [DOI:10.1104/pp.51.5.914] [PMID] [PMCID]
30. Mobli, A., Mollaee, M., Manalil, S. and Chauhan, B.S. 2020. Germination Ecology of Brachiaria eruciformis in Australia and Its Implications for Weed Management. Agronomy, 10(1): 30. [DOI:10.3390/agronomy10010030]
31. Mojab, M., Hosseini, M., Zamani, G.R., Kohansal, A. and Ebrahimi, E. 2015. Evaluation of different dormancy breaking methods and effects of salt (NaCl) and drought (PEG6000) stresses on germination characteristic of mesquite (Prosopis stephaniana Willd). Environmental Stresses in Crop Sciences, 8(1): 101-108. [In Persian with English Summary].
32. Paolini, R., Principi, M., Froud-Williams. R.J., Del Plugia, S. and Biancardi, E. 1999. Competition between sugarbeet and Sinapis arvensis and Chenopodium album, as affected by timing of nitrogen fertilization. Weed Research, 39(6): 425-440. [DOI:10.1046/j.1365-3180.1999.00156.x]
33. Qaderi, M.M., Cavers, P.B. and Bernards, M.A. 2003. Pre- and post-dispersal factors regulate germination patterns and structural characteristics of Scotch thistle (Onopordum acanthium) cypselas. New Phytologist, 159(1):263-278. [DOI:10.1046/j.1469-8137.2003.00777.x] [PMID]
34. Rabiei, A., Nezami, A., Goldani, M., Khajeh-Hosseini, M. and Nassiri- Mahallati, M. 2017. Cardinal temperatures for seed germination of six ecotypes of Plantago major. Iranian Journal of Seed Science and Technology, 6(1): 57-68. [In Persian with English Summary].
35. Ranal, M.A., Santana, D.G.D., Ferreira, W.R. and Mendes-Rodrigues, C. 2009. Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany, 32(4): 849-855. [DOI:10.1590/S0100-84042009000400022]
36. Sultan, S.E. 1996. Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology, 77(6): 1791-1807. [DOI:10.2307/2265784]
37. Tolyat, M.A., Tavakkol Afshari, R., Jahansoz, M.R., Nadjafi, F. and Naghdibadi, H.A. 2014. Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis subsp. Daenensis. Seed Science and Technology, 42(1): 28-35. [DOI:10.15258/sst.2014.42.1.03]
38. Turner, S.R., Meritt, D.J., Baskin, C.C., Dixon, K.W. and Baskin, J.M. 2005. Physical dormancy in seeds of six genera of Australian Rhamnaceae. Seed Science Research, 15(1): 51-58. [DOI:10.1079/SSR2004197]
39. Zhang, H., Irving, L.J., Tian, Y. and Zhou, D. 2012. Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African Journal of Botany, 78: 203-210. [DOI:10.1016/j.sajb.2011.08.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.