Volume 6, Issue 2 ((Autumn & Winter) 2020)                   Iranian J. Seed Res. 2020, 6(2): 15-29 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rostamipoor A, Mordai A, Eisvand H. (2020). Effect of Seed Dormancy Breaking Treatments on Germination and α-amylase Enzyme Activity in Seeds of Three Ecotypes of Astragalus (Astragalus cyclophyllu). Iranian J. Seed Res.. 6(2), : 2 doi:10.29252/yujs.6.2.15
URL: http://yujs.yu.ac.ir/jisr/article-1-387-en.html
Yasouj University , amoradi@yu.ac.ir
Abstract:   (7858 Views)



Extended Abstract
 Introduction: Seed dormancy, as a technique to avoid environmental stress, is important in preserving plant species and could be of various types including physiological, physical, morphological and morph-physiological dormancy. Seed testa hardness is one of the main causes of dormancy in leguminous family plants. A common method for breaking seed dormancy in leguminous plants is the use of scarification treatments. Given that oxygen deficiency is a factor that induces dormancy, scarification treatments through acceleration of gas exchanges, especially oxygen and carbon dioxide, can reduce seed dormancy and finally increase germination percentages. In addition, priming with gibberellic acid can help dormancy breaking in plant species that have physiological dormancy, finally leading to germination. Therefore, the present study investigated seed dormancy and germination to find the most appropriate treatment for the elimination of seed dormancy in three ecotypes of Astragalus cyclophyllus.
Materials and Methods: A factorial experiment based on a completely randomized design with three replications was carried out at Agriculture Laboratory of Lorestan University in 2013. The first factor was three ecotypes of Astragalus Semirom, Damavand and Zanjan, and the second factor was seed dormancy breaking treatments. The applied treatments were: control, (mechanical scarification plus chilling time with 10, 20 and 30 days prechilling at 4°C, mechanical scarification + gibberellic acid at concentrations of 400 and 500 ppm for 48 hours, scarification with sulfuric acid 96% for 2 and 4 min, mechanical scarification and 2% potassium nitrate for 72 h, mechanical scarification and gibberellic acid 400 ppm for 48 h and 20 days prechilling. The measured indices included germination percentage, mean germination time, seedling length, seedling fresh weight, seedling dry weight and alpha-amylase activity.
Results: The results showed that the interactions between seed dormancy breaking treatments and ecotype were significant for all the traits. Based on the results of mean comparison, Damavand ecotype exhibited better performance in terms of most of the traits studied, as compared with Semirom and Zanjan ecotypes. Compared with the treatments applied, mechanical scarification plus gibberellic acid 400 ppm was more effective in germination parameters and seedling vigor index. Mechanical scarification and gibberellic acid 400 ppm for 48 h along with 20 days prechilling increased total germination percentage by an average of 67.68% in Semirom ecotype and was more effective in increasing the activity of α-amylase enzyme.
Conclusion: It seems that seed dormancy of Astragalus cyclophyllus is not of physiological type and increased germination can be due to mechanical scarification in physical dormancy breaking and priming effect of prechilling and gibberellic acid.
 
 
Highlights:

  1. The effect of different dormancy breaking treatments on seed germination was investigated.
  2. Alpha-amylase activity of Astragalus Seed increased under dormancy breaking treatments.
Article number: 2
Full-Text [PDF 409 kb]   (1429 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2018/12/17 | Revised: 2021/03/13 | Accepted: 2019/06/2 | ePublished: 2020/05/2

References
1. Abu-Qaoud, H. 2007. Effect of scarification, gibberellic acid and stratification on seed germination of three Pistacia species. Research Natural Science, 21:2-11.
2. Baker, J.E. 1991. Purification and partial characterization of Alpha-amylase Allozyme from the lesser grain borer Rhyzopertha dominica. Insect Biochemistry, 21: 303-311. [DOI:10.1016/0020-1790(91)90020-F]
3. Balouchi, H.R. and Modarres Sanavy, S.A.M. 2006. Effect of gibberellic acid, prechilling, sulfuric acid and potassium nitrate on seed germination and dormancy of annual Medics. Pakistan Journal of Biological Sciences, 9 (15): 2875-2880. [DOI:10.3923/pjbs.2006.2875.2880]
4. Baskin, C.C. and Baskin, J.M. 1998. Seeds ecology, Biogeography, Evolution of dormancy and germination. Academic Press. San Diego. CA, USA: Academic Press.
5. Baskin, J.M. and Baskin, C.C. 2004. A classification system for seed dormancy. Seed Science Research, 14:1-16. [DOI:10.1079/SSR2003150]
6. Bernfeld, P. 1991. Amylase α and β. Methods in Enzymology, 1: 149-151.
7. Bewley, D.J., and Black, M. 1985. Seeds physiology of development and Germination. Plenum Press. NewYork, 445p. [DOI:10.1007/978-1-4615-1747-4]
8. Bewley, J.D. 1997. Seed germination and dormancy. The plant Cell, 9: 1055-1066. [DOI:10.1105/tpc.9.7.1055] [PMID] [PMCID]
9. Biswas, P.K., Devi, A., Roy, P.K. and Paul, K.B. 1987. Enzyme activity in dormant and non-dormant larg crabgrass (Digitaria sanguinalis) seeds following hydration. Weed Science, 26(1): 90-93. [DOI:10.1017/S0043174500032744]
10. Caliskan, O., Maviand K. and Polat, A. 2012. Influences of presowing treatments on the germination and emergence of fig seeds (Ficus carica L.). Acta Scientiarum Agronomy, 34(3): 294-297. [DOI:10.4025/actasciagron.v34i3.13392]
11. Copeland, L.O. and McDonald, M.B. 1995. Principals of seed science and technology. Third Edition.Chapman and Hall. New York. 236p.
12. Doroth, M. and Naofumi, K. 2002. Changes in - and -amylase activities during seed germination of African finger millet. Food Science and Biotechnology, 52(6): 481-488. [DOI:10.1080/09637480220164361] [PMID]
13. Eisvand, H.R., Arefi, H.M. and Tavakol-Afshari, R. 2006. Effects of various treatments of breaking seed dormancy of Astragalus siliquosus. Seed Science and Technology, 34(3): 747-752. [DOI:10.15258/sst.2006.34.3.22]
14. El-Dengawy, E.F.A. 2005. Promotion of seed germination and subsequent seedling growth of loaquat (Eriobotrya japonica) by moist-chilling GA3 applications. Scientia Horticulturae, 105(3): 331-342. [DOI:10.1016/j.scienta.2005.01.027]
15. Fateh, E., Majnoonhosseini, N., Arefi, H.M. and Sharif-Zadeh, F. 2005. Seed dormancy methods breakage in Astragalus tribuloides. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 13(4): 345-360 [In Persian with English Summary].
16. Fetouh, M. I. and Hassan, F.A. 2014. Seed germination criteria and seedling characteristics of Magnolia grandiflora L. trees after cold stratification treatments. International Journal of Current Microbiology and Applied Sciences, 3(3): 235-241.
17. Finch-Savage, W.E. and Leubner-Metzger, G. 2006. Seed dormancy and the control of germination. New Phytologist, 171(3): 501-523. [DOI:10.1111/j.1469-8137.2006.01787.x] [PMID]
18. Frey A., Godin, B., Bonnet, M., Sotta, B. and Marion-Poll, A. 2004. Maternal synthesis of abscisic acid control seed development and yield in Nicotiana plumbaginafolia. Planta, 218(6): 958-964. [DOI:10.1007/s00425-003-1180-7] [PMID]
19. Gupta,V. 2003. Seed germination and dormancy breaking techniques for indigenous medicinal and aromatic plants. Journal of Medicinal and Aromatic Plant Science, 25: 402-407.
20. Harberd, N.P. and Peng, J. 2002. The role of GA-mediated signaling in the control of germination. Weed Science, 5: 376-381. [DOI:10.1016/S1369-5266(02)00279-0]
21. International Seed Testing Association. 2013. Guide to ISTA-Association overvie [Electronic] Basserdorf: ISTA secretariat, [brochure] Acces. http://www. Seed test. Org/ upload/cms/ user/ Guide to ISTA newweb.
22. Jauron, R. 2000. Germination of tree seed, maples (Acer species). Department of Horticulture Iowa State University. 102-103.
23. Kermod, A.R. and Finch-Savage, B.E. 2002. In: Black, M., Pritchard, H.W. (eds.). Desiccation and survival in plants: Drying without Dying.Wallingford: CABI, PP: 149-184.
24. Khayat Moghadam, M., Agah F. and Sadrabadi Haghighi, R. 2015. Evaluation of seed dormancy breaking methods in Astragalus parrowianus. International Journal of Farming and Allied Sciences, 4(5): 473-476.
25. Mabberley, D.J. 2008. Mabberley's Plant-Book. A Portable Dictionary of Plants, Their Classification and Uses, 3rd ed. Cambridge University Press, Cambridge.
26. Macchia, M., Angelini, L.G. and Ceccarini, L. 2001. Methods to overcome seed dormancy in Echinacea angustifolia DC. Scientia Horticulturae, 89(4): 317-324. [DOI:10.1016/S0304-4238(00)00268-5]
27. Martin, I. and De la Cuadra, C. 2004. Evaluation of different scarification methods to remove hardseededness in Trifolium subterraneum and Medicago polymorpha accessions of the Spanish base genebank. Seed Science Technology, 32(3): 671-681. [DOI:10.15258/sst.2004.32.3.03]
28. Masoumi, A. 2005. Astragalus of Iran. Tehran: Research Institute of Forests and Rangelands of Iran, V: 5-1.
29. Mc Donald, M.B. and Kwong, F.Y. 2005. Flower seeds longevity and deterioration. Flower seeds biology and technology. CABI Publishing, 187. [DOI:10.1079/9780851999067.0000]
30. Moradi, A., Sharifzadeh, F., Tavakol Afshari R. and Maali Amiri, R. 2010. Seed priming effects on germination and seedling growth of tall wheat grass (Agropyron elongatum) under control and drought stress conditions. Journal of Rangeland, 4(3): 462-473. [In Persian with English Summary].
31. Mozaffarian, V.1996. A Dictionary of Iranian Plants Names, Farhang-e Moaser, Tehran, 228-230. [In Persian].
32. Najafi, F., Bannayan, M., Tabrizi, L. and Rastgoo, M. 2006. Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. Journal of Arid Environment, 64: 542-547. [DOI:10.1016/j.jaridenv.2005.06.009]
33. Parsa, A. 1984. Flora of Iran. Publisher Tehran, 2: 801-905. [In Persian].
34. Razavi, S.M. and Hajiboland, R. 2009. Dormancy breaking and germination of Prangos ferulacea seeds. Journal of Biosciences (Eur Asian), 3: 78-83. [DOI:10.5053/ejobios.2009.3.0.11]
35. Rezvani, M., Zaefarian, F. and Amini, V. 2014. Effects of chemical treatments and environmental factors on seed dormancy and germination of shepherds purse (Capsella bursa-pastoris L.) Medic.). Acta Botanica Brasilica, 28(4): 495-501. [DOI:10.1590/0102-33062014abb3337]
36. Scherson, R.A., Vidal, R. and Sanderson, M.J.U. 2008. Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. American Journal of Botany, 95: 1030-1039. [DOI:10.3732/ajb.0800017] [PMID]
37. Schmitz, N., Xia, J.H. and Kermode, A.R. 2001. Dormancy of yellow cedar seeds is terminated by gibberellic acid in combination with fluridone or with osmotic priming and moist chilling. Seed Science and Technology, 29: 331-346.
38. Schmitz, O., Krivan, V. and Ovadia, O. 2007.Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters, 7(2): 153-163. [DOI:10.1111/j.1461-0248.2003.00560.x]
39. Segura, F., Vicente, M.J., Franco, J.A. and Martínez-Sanchez, J.J. 2015. Effects of maternal environmental factors on physical dormancy of Astragalus nitidiflorus (Fabaceae), a critically endangered species of SE Spain. Flora, 216: 71-76. [DOI:10.1016/j.flora.2015.09.001]
40. Stuart, D.I. and Jones, R.L. 1997. Roles of extensibility and trugor in gibberellins-and dark-stimulated growth. Plant Physiology, 59: 61-68. [DOI:10.1104/pp.59.1.61] [PMID] [PMCID]
41. Tavakol-Afshari, R., Sharifzadeh, F. and Chavoshinasab, S. 2012. Germination improvement and α-amylase and β-1,3-glucanase activity in dormant and non-dormant seeds of Oregano (Origanum vulgare). Australian Journal of Crop Science, 5(4): 421-427.
42. Tavili, A., Saberi, M., Nasseri, H. and Etemad, V. 2008. Comparison effect of different methods of seed dormancy on seed germination of Simrnovia iranica. Scientific Journal of Rangeland, 4: 410-402.
43. Taylor, J.S. and Wearing, P.E. 1997. The effect of stratification on the endogenous levels of gibberellins and cytokinins in seeds of douglas fir (Pseudotsuga menziesii (Mirb) Franco.) and sugar pine (Pinus ambertiana Doug). Plant Cell Environment, 2(2): 165-172. [DOI:10.1111/j.1365-3040.1979.tb00789.x]
44. Vieira, A.R., Oliveira, J.A., Guimaraes, R.M., Vonpinho, E.V.R., Pereira, C.E. and Clemente, A.C. S. 2008. Marcador isoenzimático de dormência em sementes de arroz. Revista Brasileira de Sementes, Lavras, 30(1): 81-89. [DOI:10.1590/S0101-31222008000100011]
45. Westwood, N.N. and Bjornstad, H.O. 2002. Chilling requirements of dormant seeds on 14 pear species as related to their climatic adaptation. Proceedings of the American Society of Horticultural Science, 92: 141-149.
46. Young, J.A. and Young, C.G. 1986. Seeds of woody plants in North America. Dioscorides Press, Portland, Oregan.
47. Zhang, Y., Lu, S.H. and Gao, H. 2012. Effects of stratification and hormone treatments on germination and physio-biochemical properties of Taxus chinensis. Genes and Development, 19: 1532-1543.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.