Gonbad Kavous University , eg.alamdari@gonbad.ac.ir
Abstract: (588 Views)
Extended abstract
Introduction: Borage plant (Caccinia macranthera) belongs to the family of Boraginaceae. Botanically, it is an annual, herbaceous, and wild plant. Secondary metabolites are often limited to a small group of plants within a species whose bioactive compounds, unlike primary metabolites, are found in specific organs or phenological stages of plants. Borage plant shows potent antioxidant, antibacterial and medicinal properties and it has high biomass in the arid and semi-arid regions of the eastern areas of the Golestan province. Usually, the release of allelopathic compounds from some wild plants and weeds into the environment, poses a serious challenge to the germination, morphological, and physiological characteristics of crops and even weeds. This study was conducted to evaluate the allelopathic potential of C. macranthera on germination, seedling growth, physiological, biochemical characteristics, and antioxidant activity of Pisum sativum as a plant sensitive to allelochemicals.
Materials and Methods: The experiment was carried out based on a completely randomized design with three replications in 2024. For extracting, 5 g of the whole powdered C. macranthera (by weight) was mixed with 100 mL of distilled water (by volume). Then different concentrations (i.e., 20, 40, 60, 80 and 100%) were prepared from the extract obtained from the base solution. Distilled water was also used as a control sample.
Results: The results showed that germination characteristics such as percentage and rate of germination, length of radicle, plumule and seedling, allometric coefficient, seedling length vigor index, dry weight of radicle, plumule and seedling, seedling weight vigor index in addition to the total chlorophyll pigment content of P. sativum were significantly reduced under different concentrations of C. macranthera. In contrast, the mean time to 50% germination of P. sativum increased with increasing the concentration of aqueous extract of C. macranthera. So that the difference in the effect of different concentrations of C. macranthera was dependent on their concentration threshold. This may be due to the accumulation of more harmful compounds present in the aqueous extract with increasing concentration, especially alkaloids and phenol. The physiological characteristics such as adaptive osmolytes (proline content and soluble sugars), total phenol, and antioxidant activity in P. sativum radicle and plumule had an increasing trend under allelopathic stress of C. macranthera aqueous extract. Therefore, the decrease in germination characteristics and seedling growth of pea can be related to the insufficiency of these protectors against high oxidative stress of C. macranthera.
Conclusions: Considering the demonstrated harmful effects of wild plant of C. macranthera and its high biomass in arid and semi-arid regions, especially in the east of Golestan province. It may be possible to use the bioactive compounds in this plant as an environmentally friendly herbicide. Further studies are needed to confirm its positive effects on other species before its application as a bioherbicide.
Highlights:
- The difference in the accumulation of allelopathic compounds of the aqueous extract from C. macranthera causes a different reduction effect in morphophysiological traits Pisum sativum.
- The bioactive compounds in C. macranthera can be a suitable option for the production of environmentally friendly herbicide.
Type of Study:
Research |
Subject:
Seed Physiology Received: 2024/07/7 | Revised: 2025/03/2 | Accepted: 2024/11/20