Volume 10, Issue 1 ((Spring and Summer) 2023)                   Iranian J. Seed Res. 2023, 10(1): 145-158 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbannezhad F, Zavareh M, Sharifzadeh F. (2023). Quantifying the seed germination responses of two linseeds (Linum usitatissimum) genotypes to temperature. Iranian J. Seed Res.. 10(1), : 9 doi:10.61186/yujs.10.1.145
URL: http://yujs.yu.ac.ir/jisr/article-1-557-en.html
University of Guilan , mzavareh@guilan.ac.ir
Abstract:   (1180 Views)
Extended abstract
Introduction: Linseed (Linum usitatissimum L.) is a multipurpose crop and is cultivated to obtain oil, fiber, and seeds. Under optimal moisture conditions, the temperature is considered an environmental factor affecting the germination of this crop. Hence, knowing the cardinal temperatures can help farmers to predict the successful germination, emergence, and even yield of linseed and help scientists to develop new cultivars that are more tolerant to high temperatures. Therefore, this study was performed to determine the temperature range and the cardinal temperatures of germination in two linseed genotypes.
Material and methods: The germination response of two linseed genotypes (Golchin genotype and Line 286) to nine temperatures (3, 5, 10, 15, 20, 25, 30, 35, and 40 Celsius degrees) was quantified in a CRD based split-plot experiment with four replications. For this purpose, three nonlinear regression models (beta, segmented, and dent-like) were used to fit to the data and select the superior model. The superior model was selected using the Akaike information index (AIC), the modified Akaike index (AICc), and ∆i.
Results: Findings showed that the beta model had the best performance in estimating the line 286 cardinal temperatures according to its lower AIC (-3.96), AICc (-89.61), and ∆i (0). Accordingly, the base, optimum, and maximum temperature as well as the number of biological hours estimated by this model for Line 286 were 7.18, 24.22, 40.16 Celsius degrees, and 19.25 hours, respectively. In the Golchin genotype, the beta model with the lowest AIC=-3.89 and AICc= -89.083 fitted better compared with the other models. Nonetheless, considering ∆i for beta which was respectively 0, 1.61, and 4.49 for beta, segmented, and dent-like models, Beta and segmented models had a similar accuracy in estimation of cardinal temperatures for Golchin genotype. These findings represent that the suitable temperature range for germination of the Golchin genotype is 3.8- 23.85 Celsius degrees and the range of biological hours to 50% of germination varied from 16.42 to 19.77 hours.
Conclusion: Overall, according to the results of this study, it is possible to predict the time to germination under optimal moisture conditions using the beta model for Line 286 and one of the two beta and segmented models for the Golchin genotype.

Highlights:
1. A suitable model was developed for a suitable prediction of the seed germination percentage of two linseed genotypes (Golchin genotype and Line 286).
2. The cardinal temperatures for two linseed genotypes (Golchin genotype and Line 286) were determined.
Article number: 9
Full-Text [PDF 504 kb]   (819 Downloads)    
Type of Study: Research | Subject: General
Received: 2023/02/5 | Revised: 2024/02/21 | Accepted: 2023/08/2 | ePublished: 2023/11/26

References
1. Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716-723. 1974.1100705 [DOI:10.1109/TAC.]
2. Akpa, O. M., and Unuabonah, E. I. 2011. Small-sample corrected Akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models. Desalination, 272(1-3): 20-26. [DOI:10.1016/j.desal.2010.12.057]
3. Alvarado, V., and Bradford, K. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment, 25(8): 1061-1069. [DOI:10.1046/j.1365-3040.2002.00894.x]
4. Andreucci, M., Moot, D. J., Black, A., and Sedcole, R. 2016. A comparison of cardinal temperatures estimated by linear and nonlinear models for germination and bulb growth of forage brassicas. European Journal of Agronomy, 81: 52-63. [DOI:10.1016/j.eja.2016.08.010]
5. Bonhomme, R. 2000. Bases and limits to using 'degree. day'units. European Journal of Agronomy, 13(1): 1-10. [DOI:10.1016/S1161-0301(00)00058-7]
6. Bradford, K. J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2): 248-260. [DOI:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2]
7. Burnham, K. P., and Anderson, D. R. 2002. Model Selection and Multimodel Inference: A practical information-theoretic approach. Springer, New York, USA. p.488.
8. Cardwell, V. B. 1984. Seed germination and crop production. In M. B. Teaser (Ed.), Physiological basis of crop growth and development (pp. 53-92). Madison, WI: ASA. [DOI:10.2135/1984.physiologicalbasis.c3]
9. Covell, S., Ellis, R., Roberts, E., and Summerfield, R. 1986. The influence of temperature on seed germination rate in grain legumes: I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany, 37(10): 1503-1515. [DOI:10.1093/jxb/37.10.1503]
10. Foley, M. E., and Fennimore, S. A. 1998. Genetic basis for seed dormancy. Seed Science Research, 8(2): 173-182. [DOI:10.1017/S0960258500004086]
11. Garcia-Huidobro, J., Monteith, J., and Squire, G. 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. Journal of Experimental Botany, 33(2): 288-296. [DOI:10.1093/jxb/33.2.288]
12. Hardegree, S. P., and Winstral, A. H. 2006. Predicting germination response to temperature. II. Three-dimensional regression, statistical gridding and iterative-probit optimization using measured and interpolated-subpopulation data. Annals of Botany, 98(2): 403-410. [DOI:10.1093/aob/mcl112] [PMID] []
13. Hasanuzzaman, M. 2019. Agronomic crops. Springer, Singapore. pp 455-459. [DOI:10.1007/978-981-32-9783-8_21]
14. Hoseinipoor, A., Yadavi, A.R., balouchi, H.R., and Moradi, A. 2020. The effect of water potential and deterioration on some indices of germination and biochemical of linseed (Linum usitatissimum Var. Norman) seed at different temperatures. Iranian Journal of Seed Science and Technology, 9(2): 19-33. [In Persian with English Summary]. https://dx.doi.org/10.22034/ijsst.2019.123144.1225.
15. Jame, Y., and Cutforth, H. 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124(3-4): 207-218. [DOI:10.1016/j.agrformet.2004.01.012]
16. Kamkar, B., Al-Alahmadi, M. J., Mahdavi-Damghani, A., and Villalobos, F. J. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products, 35(1): 192-198. [DOI:10.1016/j.indcrop.2011.06.033]
17. Klein, J., Zikeli, S., Claupein, W., and Gruber, S. 2017. Linseed (Linum usitatissimum) as an oil crop in organic farming: abiotic impacts on seed ingredients and yield. Organic Agriculture, 7(1-19): 1-19. [DOI:10.1007/s13165-016-0146-6]
18. Kurt, O. 2012. A predictive model for the effects of temperature on the germination period of flax seeds (Linum usitatissimum L.). Turkish Journal of Agriculture and Forestry, 36: 654-658. [DOI:10.3906/tar-1202-13]
19. Liu, J., Hasanuzzaman, M., Wen, H., Zhang, J., Peng, T., Sun, H., and Zhao, Q. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, 256: 1217-1227. [DOI:10.1007/s00709-019-01354-6] [PMID]
20. Maguire, J.D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2: 176-177. [DOI:10.2135/cropsci1962.0011183X000200020033x]
21. Mamedi, A., Tavakkol Afshari, R., and Oveisi, M. 2017. Cardinal temperatures for seed germination of three quinoa (Chenopodium quinoa Willd.) cultivars. Iranian Journal of Field Crop Science, 48(89-100): 89-100. [In Persian with English Summary] https://dx.doi.org/10.22059/ijfcs.2017.206204.654106.
22. McWilliam, J., Clements, R., and Dowling, P. 1970. Some factors influencing the germination and early seedling development of pasture plants. Australian Journal of Agricultural Research, 21(1): 19-32. [DOI:10.1071/AR9700019]
23. Mhiret, W. N., and Heslop-Harrison, J. S. 2018. Biodiversity in Ethiopian linseed (Linum usitatissimum L.): molecular characterization of landraces and some wild species. Genetic Resources and Crop Evolution, 65: 1603-1614. [DOI:10.1007/s10722-018-0636-3]
24. Parmoon, G., Moosavi, S. A., Akbari, H., and Ebadi, A. 2015. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. The Crop Journal, 3(2): 1-7. [DOI:10.1016/j.cj.2014.11.003]
25. Piper, E. L., Boote, K. J., Jones, J. W., and Grimm, S. S. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36(6): 1606-1614. [DOI:10.2135/cropsci1996.0011183X003600060033x]
26. Ritchie, J. T., and Nesmith, D. S. 1991. Temperature and crop development. Modeling Plant and Soil Systems, 31: 5-29. [DOI:10.2134/agronmonogr31.c2]
27. Safahani, A. r., Kamakar, B., and Nabizadeh, A. 2017. Cardinal temperatures and thermal time required for emergence of lentil (Lens culinaris Medik). Legume Research-An International Journal, 40(2): 291-298. http://10.0.73.117/lr.v0i0.7301.
28. Savaedi, Z., Parmoon, G., Moosavi, S. A., and Bakhshande, A. 2019. The role of light and Gibberellic Acid on cardinal temperatures and thermal time required for germination of Charnushka (Nigella sativa) seed. Industrial Crops and Products, 132: 140-149. [DOI:10.1016/j.indcrop.2019.02.025]
29. Shafii, B., and Price, W. J. 2001. Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological, and Environmental Statistics, 6(3): 356-366. [DOI:10.1198/108571101317096569]
30. Soltani, A., Robertson, M., Torabi, B., Yousefi-Daz, M., and Sarparast, R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1-4): 156-167. [DOI:10.1016/j.agrformet.2006.04.004]
31. Soltani, E., Galeshi, S., Kamkar, B., and Akramghaderi, F. 2008. Modeling seed aging effects on the response of germination to temperature in wheat. Seed Science and Biotechnology, 2(1): 32-36.
32. Soureshjani, H. K., Bahador, M., Tadayon, M., and Dehkordi, A. G. 2019. Modelling seed germination and seedling emergence of flax and sesame as affected by temperature, soil bulk density, and sowing depth. Industrial Crops and Products, 141: 1-8. [DOI:10.1016/j.indcrop.2019.111770]
33. Veerhoff, O. 1940. Time and temperature relations of germinating flax. American Journal of Botany, 27(4):225-231. [DOI:10.2307/2436884]
34. Wade, L., Hammer, G., and Davey, M. 1993. Response of germination to temperature amongst diverse sorghum hybrids. Field Crops Research, 31(3-4): 295-308. [DOI:10.1016/0378-4290(93)90068-X]
35. Wiese, A. M., and Binning, L. K. 1987. Calculating the threshold temperature of development for weeds. Weed Science, 35(2): 177-179. [DOI:10.1017/S0043174500079017]
36. Windauer, L., Altuna, A., and Benech-Arnold, R. 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products, 25(1):70-74. [DOI:10.1016/j.indcrop.2006.07.004]
37. Yan, W., and Hunt, L. 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84(5): 607-614. [DOI:10.1006/anbo.1999.0955]
38. Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., and Spiertz, H. J. 2003. A flexible sigmoid function of determinate growth. Annals of Botany, 91(3): 361-371. [DOI:10.1093/aob/mcg029] [PMID] []
39. Yin, X., Kropff, M. J., McLaren, G., and Visperas, R. M. 1995. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(1-2): 1-16. [DOI:10.1016/0168-1923(95)02236-Q]
40. Zhang, J., Xie, Y., Dang, Z., Wang, L., Li, W., Zhao, W., Zhao, L., and Dang, Z. 2016. Oil content and fatty acid components of oilseed flax under different environments in China. Agronomy Journal, 108(1): 365-372. [DOI:10.2134/agronj2015.0224]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.