Search published articles


Showing 4 results for Safaie

Banafshe Safaie Farahani , Reza Mostowfizadeh-Ghalamfarsa,
Volume 2, Issue 1 (3-2013)
Abstract

DNA microarrays technology is a method for studying the gene expression in large scale, based on investigations of probes and targets hybridization. This technology can also be used for identification of different organisms. DNA microarrays are a set of probes linked to a solid phase as microscopic spots. After hybridization of targets to probes, hybridization level is calculated by means of different methods such as measuring refulgence of fluorescent dyes to determine gene expression level. A microarray examination has different steps: making DNA chips, preparing targets, performing hybridization, and gathering and analyzing data. DNA microarrays technology can be used in different fields of plant pathology such as identification of different species of fungi, bacteria, nematodes and viruses, and to study plant-pathogen interaction.
Hamidreza Rahmani, Ebrahim Mohamadi Goltapeh, Naser Safaie,
Volume 5, Issue 1 (2-2016)
Abstract

Rahmani H. R., Mohammadi Goltapeh E. & Safaie N. 2015. The role  of  endophytic fungus Pirifomospora indica  in  plant  disease  management. Plant Pathology Science 5(1):48-61.

Piriformospora indica as the one of the most important soil endophytic microorganism, can increase yield of plants per unit area, by modifying the physiological characteristics of the host plants. It also provide the possibility of crop production in saline and arid soils or even in some conditions with biotic and abiotic stresses.  It grants resistance to plant against diseases, through the induction of systemic resistance. Also the fungus can cause an increase in resistance to salinity and drought, through the increase in antioxidant capacity of root cells and levels of resistance proteins in their host plants. In order to adopt organic farming and achieve sustainable agriculture, this fungus can be used as a suitable alternative for chemical fertilizers and pesticides.


Banafsheh Safaiefarahani, Reza Mostowfizadeh-Ghalamfarsa,
Volume 6, Issue 1 (2-2017)
Abstract

Safaiefarahani B. & Mostowfizadeh-Ghalamfarsa  R. 2017. Phytophthora spp. interspecific hybrids and their danger for agriculture. Plant Pathology Science 6(1): 33-46.

Interspecific hybridization is an important evolutionary process contributing to adaptation and speciation. During the last decade, advances in the molecular taxonomy techniques have led to increasing the number of descriptors interspecific hybrids in the genus Phytophthora. In Phytophthora hybrids, inheriting and recombining genes from both parents may result in increased aggressiveness and broader host range compared with either parent. Some Phytophthora natural hybrids have also been reported in Iran to date. Consequently, identification, pathogenicity and host range tests of these hybrids as well as preventing the formation of new hybrids before experiencing large economic losses are recommended for management of plant diseases caused by this fungal-like organisms.


Banafsheh Safaiefarahani, Reza Mostowfizadeh-Ghalamfarsa,
Volume 8, Issue 1 (3-2019)
Abstract

Safaei-Farahani B. and Mostowfizade-Ghalamfarsa R. 2019. Fungal plant disease management by natural essential oils. Plant Pathology Science 8(1):24-37.
DOI: 10.2982/PPS.8.1.24.

 Essential oils are hydrophobic, volatile and aromatic compounds that have been used as fragrances and flavors for a long time. Recent studies have shown that some plant essential oils have fungicidal effects against some important plant pathogens. For instance, the essential oil of thyme inhibits the mycelial growth of Penicillium italicum and the essential oil of lavender shows the fungistatic effect on ‎ Botrytis cinerea, Rhizopus stolonifer and Aspergillus niger. The essential oil of thyme has also been used to control the black rot of orange caused by Alternaria citri and grey mold of strawberry fruits caused by Botrytis cinerea. Antifungal activities of essential oils are mainly related to their effects on fungal cell wall, cell membrane, mitochondria and nitric oxide level. As a result of increased concern about harmful chemical pesticides, essential oils can have a good place in the market as natural fungicides. In this paper, application of essential oils as natural fungicides, their mode of actions and some safety aspects of their application have been discussed.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb