Search published articles


Showing 2 results for MOOSAVI

Ali Reza Sholevarfard, Seyed Mohammad Reza Moosavi,
Volume 3, Issue 1 (3-2014)
Abstract

Plant diseases are the most important limiting factors in agricultural production. Currently the major control method of plant diseases is based on the use of chemicals that raises serious concerns about food quality, environmental hazards and development of resistance to agrochemicals. These concerns have increased the need for other alternative disease management techniques. Macro- and micronutrients are normally applied to increase crop production and improve general plant health and quality. They can also increase the disease tolerance or resistance of plants, however there are some opposing reports. Although our knowledge on the impact of mineral nutrients on plant diseases, many other factors that control plant's response and dynamic interactions among plant, environment and pathogen is not sufficient, manipulating soil nutrients through amendment or modification is always an essential part in plant disease control as well as in sustainable agriculture. Mineral nutrients are generally the first and the most important line of defense against plant diseases which affect all parts of the disease triangle. Nutrients can satisfactory decrease diseases, or at least diminish them to a level at which additional control measures are more successful and less expensive. Here we review the most recent data regarding the influence of mineral nutrients on plant disease resistance and tolerance, plant histological or morphological structure and the virulence or capability of pathogens to survive.
Saeid Imani, Mohammad Reza Moosavi, Rasoul Zare, Tahere Basirnia,
Volume 10, Issue 2 ((Spring and Summer) 2021)
Abstract

Imani S, Moosavi SMR, Zare R, Basirnia T (2021) Optimum substrate and carrier for Purpureocillium lilacinum and its effectiveness against Meloidogyne javanica on tomato. Plant Pathology Science 10(2):50-64.  Doi: 10.2982/PPS.10.2.50.
Introduction: The soil-borne root-knot nematode (Meloidogyne javanica) causes heavy losses in tomato plants every year. Their management by chemical nematicides is difficult, expensive, and may also kill soil beneficial microorganisms, so other safer methods should be used to replace them. Purpureocillium lilacinum is an important biological control agent against root-knot and cyst nematodes. This study was carried out to determine the appropriate substrate and carrier of this fungus and its effect on these nematodes in tomatoes. Material and Methods: P. lilacinum was propagated in vitro on seeds of millet, corn, alfalfa, and clover substrates and their spore production was assessed 10, 20, and 30 days after inoculation. The survival of the fungal spores was then examined in talc, kaolin, and corn cob powder as carriers for 12 months. The effect of the fungus in the mentioned carriers against Meloidogyne javanica on tomato was investigated in the greenhouse by means of a completely randomized design experiment. Results: The highest number of spores in one gram of substrate was produced on millet seed on day 30. The highest number of survived spores was detected in the corncob powder carrier at all 12 months of the experiment. The fungus on corn cob powder was able to control M. javanica to 95% was similar to the nematicide Flopyram. This formulation also had a superior effect in establishing the fungus in the rhizosphere and on roots, suppressing the growth parameters of nematode and increasing plant growth. Conclusion: The fungus reproduced well on millet seeds and could last longer if formulated on corn cobs powder. Therefore, corn cobs powder can be a suitable base to produce an effective powdered product against M. javanica.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb