Search published articles


Showing 1 results for Fluid Distribution Network

Gholamreza Karimi , Alireza Bidakhti Dehghan ,
Volume 3, Issue 1 (9-2017)
Abstract

Because of increasing demand on new reliable power source for hybrid electric vehicles, lithium-ion (Li-ion) batteries have received much attention in the last decade. Problem free Li-ion batteries are already in use for low power demand applications such as cell phone and laptop battery packs, however; for high power applications such as in automotive propulsion drives, there are serious issues which need to be addressed. Among various issues that high power application lithium-ion (Li-ion) batteries are encountered, thermal issues have received more attention because of their potential to degrade battery performance. In this work, a lumped capacitance heat transfer model is developed in conjunction with a flow network approach to study performance of a commercial-size Lithium-ion battery pack, under various design and operating conditions of a thermal management system. Air, silicon oil and water are chosen as cooling media in the battery pack. Different flow configurations are considered and temperature dispersion, cell-averaged voltage and resistance distributions, and parasitic losses due to the fan/pump power demand are calculated. It is found that application of a coolant with an appropriate viscosity and heat capacity, such as water, in conjunction with a Y-type flow configuration will result in uniform temperature and voltage distributions in the battery pack while keeping the power requirement at low, acceptable levels.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb