Search published articles


Showing 3 results for Humic Acid

Hamide Azad, Bahman Fazeli Nasab, Ali Sobhanizade,
Volume 4, Issue 1 (9-2017)
Abstract

An experiment was conducted to investigate the effects of jasmonic and humic acids on some seed germination characteristics of Roselle under the salt stress condition in a factorial experiment, adopting a completely randomized design with three replications. Treatments included four different levels of salinity stresses: 0, 70, 140 and 210 mM; four levels of Jasmonic Acid: 0, 50, 150 and 200 mM and three levels of humic acid: 0, 40 and 80 mM. The results showed that the effect of salinity on all the traits studied was significant except the ratio of the length of root and shoot. With an increase in salinity stress condition from 70 to 210 mM, there were 39% decrease in germination percentage, 55% in germination rate, 45% in fresh and dry weight, 30% in root length, 42% in shoot length, 37% in seedling length, 67% in longitudinal index and 61% in the weighted power, as compared with the control. However, the longitudinal power index increased. In addition, the use of jasmonic acid and humic acids had a significant effect on the traits studied. The interaction of the salt and hormones had a significant impact on plant fresh and dry weight, the length of the root, germination percentage, power weight index and average time needed for 50 percent germination. Given that the highest rate of root length and plant fresh and dry weight belonged to the interaction of humic and jasmonic acid in the absence of salinity, that in the presence of humic acid (with 80 mM concentration), Rosselle can bear salinity up to 140 mM and maintain stamina root length and that the germination rate of Rosselle increases by adding jasmonic acid up to 200 mM,  one can conclude that the interaction of jasmonic and humic acids not only improves germination rate, but it also contributes to root length because, with an increase in root length, Rosselle can bear water stress conditions.

Highlights:
  1.  Jasmonic acid and humic acid increase the Rosselle germination in salinity condition.
  2. Jasmonic acid and humic acid increase Rosselle the root length in salinity condition.

Shirin Taghi Zoghi , Elias Soltani , Iraj Alahdadi , Reza Sadeghi ,
Volume 4, Issue 2 (3-2018)
Abstract

This study was conducted to study the effects of different priming methods on germination rate and percentage under salinity stress and to determine the stability of primed seeds. In order to accomplish this, three different experiments were conducted separately, including the experiment of water uptake, the experiment of salinity stress, and the experiment of storability of primed seeds. Priming treatments were five levels of control (unprimed), hydropriming (Hyd), priming with humic acid (HA), priming with salicylic acid (SA) and priming with gibberellic acid (GA). Salinity stresses were four levels of 0, 4, 8 and 12 ds/m of NaCl. The stability of prime seeds was investigated over a period of 226 days after priming. The results of water uptake showed that rapeseeds entered into the third phase of water uptake after 18 hours of hydration. The results of the salinity experiment showed that salinity levels of 12 and 0 ds/m had the lowest (74.3 %) and highest (83 %) germination percentage, respectively. In terms of germination rate, there were significant differences between GA (0.034 h-1), HA (0.036 h-1) and Hyd (0.036 h-1) with C (0.019 h-1) and SA (0.027 h-1). Generally speaking, primed seeds germinated better than control seeds at all levels of salinity. The storability of primed seeds and control seeds had no significant decrease during storage. Finally, it was concluded that seed priming increased the tolerance to salinity stress; in terms of storability, there was no significant difference between primed seeds and primed seeds could be stored in the same way as control seeds.

Highlights:

  1. At the current research, the stability of prime seeds was investigated for the first time.
  2. There was no significant difference between the storability of primed seeds and control (unprimed) at each sampling time (with an exception for SA).
  3. Primed seeds had better germination performance than control at the all salinity stress levels.
  4. Seed priming treatments using gibberellic acid, humic acid and hydropriming were the best compared with the other treatments.

Hamid Zolghadri, Salim Farzaneh, Mohammad Ahmadi, Raouf Sayed Sharifi,
Volume 12, Issue 1 (9-2025)
Abstract

Objective: This study aimed to investigate the effects of hydroprime and seed coating with humic acid, and biological compounds on the germination and emergence of the sweet corn cultivar 'Amyla'.
Method: The experiment was conducted using a randomized complete block design with three replications under laboratory and greenhouse conditions, and four replications under field conditions in 2018. The study was carried out at Mohaghegh Ardabili University and the experimental fields of the National Agro-Industrial Company of Moghan. The fourteen treatments consisted of seed coating with different amounts of amino acid fertilizer (2, 4, and 6 g kg-1 of seed), seaweed extract (3, 6, and 9 g kg-1 of seed), humic acid (3, 6, and 9 g kg-1 of seed), hydroprime + humic acid, hydroprime + seaweed extract, hydroprime + amino acid, hydroprime alone, and an uncoated control. A 3% carboxymethylcellulose solution was used as an adhesive for the seed coating.
Results: Seed coating with humic acid and hydroprime significantly improved the germination and emergence percentages of the 'Amyla' sweet corn seeds under laboratory, greenhouse, and field conditions. The best results were obtained with the hydroprime and humic acid (6 g kg-1) treatments, which showed the highest germination percentage (98.66%) and emergence percentage (93.33%). The germination and emergence rates also increased significantly in these treatments. Contrary to expectations, seaweed extract negatively affected the germination and emergence of the sweet corn seeds. These results indicate that using seaweed extract as a seed coating may not be suitable for all corn cultivars. The 3% carboxymethylcellulose adhesive used for coating had no adverse effect on seed germination and emergence; in some cases, it even slightly improved the results.
Conclusions: This research clearly demonstrates that coating 'Amyla' sweet corn seeds with humic acid (6 g kg-1) and hydroprime is not only a practical solution for improving germination and seedling establishment but also, as a sustainable technology, can help address challenges in modern agriculture.

Highlights
  • The effects of hydropriming and seed coating with humic acid, amino acid fertilizer, and seaweed extract on germination and emergence of 'Amyla' sweet corn cultivar were evaluated.
  • The combination of hydropriming and humic acid coating (6 g kg⁻¹) was an optimal strategy for enhancing germination and seedling establishment of 'Amyla' sweet corn cultivar.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.