Haniyeh Saadat, Mohammad Sedghi,
Volume 11, Issue 1 (9-2024)
Abstract
Extended abstract
Introduction: Environmental stresses, including salinity, result in the overproduction of reactive oxygen species, which, at high levels, can cause oxidative damage, impair membrane lipid functions, inactivate enzymes, and impede the metabolic activities of the plant. Salinity affects seedling growth through osmotic stress, ionic toxicity, lack of absorption of essential elements and water, production of free radicals, cell membrane destruction, and reduction of cell division. Seed priming is a quick, easy, low-cost, and effective strategy for improving germination. It is a seed treatment before planting in which seeds are fully immersed in special solutions and dried until further use. Seed priming assists the germinating seed in mitigating saline stress by neutralizing ionic toxicity or by promoting defense mechanisms. This study aimed to assess the effect of seed priming with vitamin U (S-Methylmethionine) on germination and the physiological and biochemical characteristics of sunflower seedlings under salinity stress.
Materials and Methods: This experiment was conducted in 2023 as a factorial based on a completely randomized design with three replications at the University of Mohaghegh Ardabili. Experimental treatments included four salinity levels (0, 50, 100, and 150 mM) and three levels of vitamin U (0, 2, and 4 mM).
Results: The results showed that salinity reduced the germination and growth indicators, including Germination Rate (GR), Germination Percentage (GP), Mean Daily Germination (MDG), Seedling Length (SL), Seedling Dry Weight (SDW), Seedling Length Vigor Index (SLVI), and Seedling Weight Vigor Index (SWVI); but seed pretreatment with different levels of vitamin U, especially the level of 4 mM, improved these traits. Daily Germination Speed (DGS) was higher by about 25% compared with the control treatment without salinity and, in priming with vitamin U compared with the control (distilled water), it showed a decrease of about 32%. Compared with the control (distilled water), the catalase, peroxidase, superoxide dismutase activities, and proline content of seedlings obtained from primed seeds increased respectively by 9%, 8%, 32%, and 47% after vitamin U treatment. With increasing salinity levels, there was a reduction trend in total seed protein content (0.384 mg g-1 FW), and the lowest total seed protein content was observed at salinity 150 mM. Mean Germination Time (MGT) and malondialdehyde content of seedlings in the priming with a concentration of 4 mM vitamin U and without salinity showed a decrease of about 73% and 21%, respectively, compared with the control (distilled water) and salinity 150 mM.
Conclusions: The results of this research showed that sunflower seed priming with vitamin U at a concentration of 4 mM is the most effective method to improve the germination and biochemical characteristics of seedlings, and stimulating antioxidant enzymes can reduce the harmful effects of salinity on some traits in sunflower seedlings and improve seedling growth.
Highlights:
- Seed priming using vitamin U improved germination indices of sunflower seed under salinity.
- Priming with vitamin U decreased the content of malondialdehyde and increased the amount of proline and protein.
- The concentration of 4 mM vitamin U revealed a better effect on germination indices and biochemical characteristics.