Haniyeh Saadat, Mohammad Sedghi,
Volume 11, Issue 1 (9-2024)
Abstract
Extended abstract
Introduction: Salinity is the most significant environmental stress that limits plant productivity by affecting morphology, physiology, and biochemistry of plants, especially in semi-arid and arid regions. Salinity disrupts and eventually delays seedling growth by delaying seed germination and reducing the germination rate. Seed priming stands out as a quick, easy, low-cost, and effective strategy for improving germination, seedling growth parameters, and overall plant defense against abiotic stresses in many crops. It is defined as the pre-sowing seed treatment during which seeds are immersed in water or chemical solutions and are dry until further use. The aim of this study was to assess the effect of priming with sodium nitroprusside on germination indices and biochemical traits in rice seedlings under salinity stress.
Materials and Methods: This experiment was conducted as a factorial based on a completely randomized design with three replications at the University of Mohaghegh Ardabili in 2023. Experimental treatments included four salinity levels (0, 50, 100, and 150 mM) and three levels of sodium nitroprusside (0, 40, and 80 µM).
Results: The results showed that salinity reduced germination and growth indicators including mean daily germination (MDG), germination coefficient (GC), allometric coefficient (AC), radicle length (RL), pedicel length (PL) and seedling length (SL), as well as radicle and pedicel fresh and dry weight (RFW, PFW, RDW and PDW), but seed pretreatment with different levels of sodium nitroprusside, especially the level of 80 µM, improved these traits. Salinity reduced the seedling moisture percentage (SMP), so that the highest SMP (70.13%) was observed in the control treatment. The highest daily germination rate (DGR) and malondialdehyde content (MDA) were observed at a salinity of 150 mM. Priming decreased DGS and MDA, so that the lowest DGS (0.08) and MDA (0.159 mM g-1 FW) were obtained in priming with 80 μM sodium nitroprusside. Also, salinity decreased the activity of the α-amylase enzyme, so the lowest α-amylase activity (7.93 mg g-1 FW seed) was obtained in the control (distilled water) and at a salinity of 150 mM.
Conclusions: The results showed that seed treatment with sodium nitroprusside at 80 µM is the most effective method to improve rice germination and biochemical traits under salinity stress. It can reduce the harmful effects of salinity on some traits in rice seedlings and improve seedling growth.
Highlights:
- Seed priming using sodium nitroprusside improved the germination indices of rice seeds under salinity.
- Priming with sodium nitroprusside decreased MDA content and increased α-amylase activity.
- The concentration of 80 µM sodium nitroprusside showed a better effect on germination indices and biochemical characteristics.