Search published articles


Showing 3 results for Seed Bank

Elias Soltani, Afshin Soltani, Serollah Galesh, Farshid Ghaderi-Far, Ebrahim Zeinali,
Volume 1, Issue 1 (5-2014)
Abstract

The aim of this study was to investigate and to quantify the effect of burial depth on seedling emergence of volunteer canola and wild mustard. Seeds were buried in 12 different depths (1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30 cm) in 4 replications and seedling emergence was measured daily. Results indicated that emergence percentage of volunteer canola was around 98 % from 1 to 2.9 cm of burial depth and deeper depths decreased emergence percentage with a slope of -0.4 and reached to zero in burial depth of 10 cm. Seedling emergence percentage of wild mustard was described using an exponential model on the response to burial depth. According to the model, wild mustard seedling emergence decreased from 66 % in 1 cm depth to 0 % in 8 cm depth. Increasing burial depth leads to reduction of seedling emergence rate that it well quantified for both species. Seeds of these two species that buried in deeper soil layers from 10 cm for volunteer canola and 8 cm for wild mustard can expand soil seed bank and will not emerge. The results of this study may provide useful information in ecological weed management and prediction seedling emergence of weeds.


Asieh Siahmarguee, Farshid Ghaderifa, Javid Gherekhloo, Atefeh Akbari Gelvardi, Maryam Gorgani,
Volume 9, Issue 1 (9-2022)
Abstract

Extended abstract:
Introduction: Reports indicate the invasion of two species of Ivy-leaved morning-glory (Ipomoea hederaceae Jacq) and Asian spider flower (Cleome viscosa L.) to summer crops fields such as soybeans in Golestan province. Considering the importance of knowing the cardinal temperatures of germination in the models for predicting the presence of weeds and consequently designing correct management strategies on these plants, this experiment was conducted to study the germination behavior and to compare the cardinal temperatures of germination for two species of Ivy-leaved morning-glory and Asian spider flower under two conditions of constant and alternating temperatures.
Materials and Methods: In order to study the effects of constant and alternating temperature on the percent, rate and estimating cardinal temperature of germination for Ivy-leaved morning glory and Asian spider flower, two separate experiments as a Completely Randomized Design with four replications were carried out at the seed laboratory of Gorgan University of Agricultural Sciences and Natural Resources. Studied temperature treatments on Ivy-leaved morning glory included the constant temperatures of 10,15,17,20,25,30,35 and 40 oC and alternating temperatures of 12.5:7.5,10:15, 12.5:20, 15:25, 20:30, 25:37.5, 30:42.5 and 35:45 oC. Temperature treatments on Asian spider flower included the constant temperatures of 15, 20, 23, 25, 28, 30, 35, 40, 45 and 50 o C and alternating temperatures of 15:20, 20:25, 20:30, 25:30, 25:35, 30:40, 30:45, 30:50 and 40:50 oC.
Results: Results indicated that alternating temperatures had a positive effect on the germination of Ivy-leaved morning glory, which increased from 78% at constant temperatures to 94% at alternative temperatures. However, the maximum germination percentage of Asian spiderflower at the alternative temperature of 20:30 was 79%, which had no significant difference with a constant temperature of 30 with 84% germination. The base temperature for seed germination of Ivy-leaved morning glory at alternating temperatures (10.09 oC) was a little lower than that of constant temperatures (11.25 oC). But in Asian spider flower, the base temperature at alternating temperatures (17.57 oC) was more than that of constant temperatures (15.43 o C).
Conclusion: The most important factor in the occurrence of such different responses to constant and alternating temperatures in Ivy-leaved morning glory and Asian spider flower is their adaptation to environmental conditions and their survival in highly degraded agricultural environments. These two weeds are warm-season plants and their seeds enter the soil seed bank in autumn. The presence of dormancy (regardless of its type) in the seeds of these two plants prevents the germination of their seeds in winter; and the experience of alternating temperatures at this time prepares the seeds for germination in the spring. The base temperature of Ivy-leaved morning glory was not much different under the constant and alternating temperature conditions. But the base temperature of Asian spider flower was higher under alternating temperatures compared with constant temperatures.
 
Highlights:
1- The Response of germination percentage of Ivy-leaved morning-glory and Asian spider flower were investigated under constant and alternating temperatures.
2- Cardinal temperatures of germination for these two weeds were compared at constant and alternating temperature conditions.

Ladan Zinati, Asieh Siahmarguee, Farshid Ghaderi-Far, Masomeh Yones-Abadi, Bhagirath Singh Chauhan,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract
Introduction: The different species of Amaranthus species are among the most important damaging weeds in the world. Due to the importance of studying the effect of management factors on seed dynamics of different weed species, this experiment aimed to investigate the effect of burial depth and high temperatures on the seed dynamic of different species of Amaranthus in Golestan province including white pigweed (A. albus), prostrate pigweed (A. belitoides), hybrid Amaranthus (A. chlorostachys), redroot pigweed (A. retrofelexus) and green Amaranthus (A. viridis) were performed.
Materials and Methods: This research was conducted on five amaranthus species of white pigweed, prostrate pigweed, hybrid Amaranthus, redroot pigweed, and green Amaranthus at the seed laboratory and greenhouse of Gorgan University of Agricultural Sciences and Natural Resources. In the first experiment, seed emergence of different species of Amaranthus was studied in eight burial depths including 0, 1, 2, 3, 4, 5, 7, and 10 cm. In the second experiment, seeds were exposed to 50, 60, 70, 80, 90, 100, and 110 °C temperatures for 5, 10, and 15 minutes
Results: All seeds of A. blitoides and A. viridis germinated in the topsoil (zero depth); But, in A. albus, A. retroflexus, A. chlorostachys, 93%, 83%, and 3% of the seeds were emergence at the soil surface, respectively. By increasing the burial depth to one centimeter, the percentage of seeds emergence in different species of Amaranthus decreased significantly and was negligible at 2 cm depth. Germination test performed on retrieved seeds showed that zero to 16% of the seeds were able to germinate in petri dish, and most of the non-germinated seeds were viable. In all species except for A. chlorostachys high temperatures reduced the germination percentage.
Conclusion: Due to the reduction of seed germination percentage of different species of Amaranthus from a depth of more than one centimeter of soil, it seems that the use of conservation and conventional tillage methods has a good potential to reduce infestation of fields by these weeds. Also, although high temperatures reduce weed infestation in fields, they do not have a significant effect on depleting the seed bank of these species.

Highlights:
1- Seed dynamics of different species of Amaranthus were affected by burial depth and high temperature
2- Deep burial of seeds of different species of Amaranthus causes the stability of their seeds in the soil seed bank.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.