Search published articles


Showing 5 results for Scarification

Mostafa Alinaghizadeh, Mohammad Khajeh-Hosseini, Seyed Ahmad Hosseini, Mohammad Hasan Rashed Mohasel,
Volume 3, Issue 2 (2-2017)
Abstract

In order to study the seed germination behavior and dormancy breaking methods of three weed species (i.e., Chenopodium album, Convolvulus arvensis and Setariaviridis) of pistachio orchards in Rafsanjan, Iran, three separate factorial experiments (with 2 factors) were conducted based on a completely randomized design with four replications, at the Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Iran, in 2014. Weed seeds were collected from five different regions of Rafsanjan, such as Markazi, Anar, Koshkoiyeh, Kabotarkhan and Nogh. Dormancy breaking treatments for Chenopodium album involved distilled water (control), KNO3 (at 500 and 1000 ppm), chemical scarification by sulfuric acid (for 5 and 10 min), and cold stratification (for 1, 3 and 5 weeks). Treatments for Convolvulus arvensis involved distilled water (control), scarification by sandpaper, chemical scarification by sulfuric acid (20 and 30 min), and boiling water (for 15 and 30 min). Treatments for Setaria viridis involved distilled water (control), gibberellic acid (250, 500 and 1000 ppm), KNO3 (500 and 1000 ppm), and cold stratification (for 1, 3 and 5 weeks). The results showed that seed germination percentage (SGP) and mean germination time (MGT) of three weed species were significantly different among weed populations and dormancy breaking methods. For Chenopodium album, cold stratification of 5 weeks resulted in highest SGP (97%) in Nogh population. For Convolvulus arvensis and Setaria viridis, the highest SGP was obtained after scarification by sandpaper (98% in Kabotarkhan population) and using 1000 ppm gibberellic acid (60% in Kabotarkhan population), respectively. In addition, increasing the weight of 1000 seeds in the three weed species in question increased SGP.
 
 


Farzad Mondani, Ashkan Jalilian, Atusa Olfati,
Volume 5, Issue 1 (9-2018)
Abstract

Extended abstract
Introduction: Malva (Malva neglecta) is one of perennial plants of the Malvaceae family. One of the most important mechanisms for survival of the plants is dormancy, rest or distance in germination and growth; in this case, despite favorable conditions for germination, the seed remains at rest for an indefinite period of time. Seed dormancy is a consistent feature in some seeds, especially weed seeds to optimize distribution of germination over time. Seed dormancy has a very important role in ecological management. The cause of the physical dormancy lies in skin cells outside tier structure that is impermeable to water. In physical dormancy, the seed coat is so hard that it does not allow the embryo to grow during germination. The chemical dormancy of the plants seeds is caused by the presence of inhibitor substances in the outer shell of many fruits and seeds and may also be due to an Enamel layer that blocks the exchange of oxygen. It goes without saying that understanding the ecology of weed germination and dormancy can contribute to long-term management. Therefore, this study was conducted to determine the effects of breaking seed dormancy and the impact of chemical and mechanical treatments on the germination of the Mallow seeds.
Materials and Methods: In order to recognize the effects of chemical and mechanical treatments on breaking seed dormancy and some of the most important features of seed germination of Malva, the experiment was conducted based on a completely randomized design with 4 replications at Crop Physiology Lab, Razi University, during 2016. Treatments were distilled water (control), sulfuric acid 98% (for 2, 3 and 4 minutes), potassium nitrate 3% (for 3, 4 and 7 days), hydrogen peroxide 30% (for 2, 3 and 4 minutes) and scarification with sandpaper and prechilling (for 1, 2 and 3 weeks). Germination percentage, germination rate, length and dry weight of hypocotyl, length and dry weight of radicle, seedling total dry weight and vigor index were evaluated. Group comparisons, analysis of variance and comparison of means were run based on LSD at 5% level, using SAS software (version 9.4).
Results: The results showed that the highest and the lowest germination percentage were 82% and 5% in scarification with a chilling for 3 weeks and control treatments, respectively. The results of treatment group comparisons also showed that using scarification with a chilling had the greatest impact on seed dormancy breaking. The most hypocotyl length (34.92 mm), hypocotyl dry weight (2.60 g), seedling dry weight (3.29 g) and seed vigor index (58.13) were observed in scarification with a chilling for 3 weeks. The highest germination rate (5.21 in day), radicle length (34.92 mm) and radicle dry weight (0.85 g) also belonged to sulfuric acid 98% for 2 minutes. It seems that seed dormancy of Malva was a combination of physiological and physical dormancy, because the effectiveness of the treatments evaluated in both metabolic and physical processes brought about the increase in the seed germination percentage.
Conclusion: Out of the treatments examined and given the results of group comparisons, scarification with sandpaper and prechilling had the most effect on breaking Malva’s seed dormancy. As scarification with chilling had the main role in breaking seed dormancy, it could be said that the dormancy is physiological and factors contributing to this dormancy are the embryo, the existence of inhibiting factors or both. The results indicated that the germination of Malva (Malva neglcta) seeds mechanically scratched with scarification increased. Therefore, seed dormancy is due to hard coated seeds. The seed coat is as one physical barrier against growth of embryo or radicle that inhibits absorption of water and gas exchanges.
 
 
Highlights:
1- Investigating dormancy breaking and germination traits of neglcta species of Malva.
2- Evaluation of efficiency of different chemical and mechanical treatments in the germination traits of Malva.

Saeed Sharafi,
Volume 7, Issue 1 (9-2020)
Abstract



Extended Abstract
Introduction: Germination and seedling establishment are the primary stages of crop growth that are highly sensitive to salinity and drought stresses. On the other hand, seed hardness affects the quality of plant germination. Therefore, the aim of this study was to analyze the effect of seed pre-treatment on germination characteristics of Medicago scutellata var Rabinson.
Material and methods: In the present study, the effects of pre-treatment methods of scarification (sand paper, knife and sand), stratification (0, -5, -10, and -15 °C), ultrasonic waves (3, 6, 9, 12, and 15 min), and magnetic field (two intensities of 125 and 250 mT in 4 times exposure by 6, 12, 18, and 24 h) on seed germination of annual medic germination affected by salinity and drought stresses (0, -3, -6, -9, and -12 bar) were investigated with three replications. Twenty seeds per Petri dish were used for each treatment. Seedlings were incubated in the dark at 20/18±0.3°C in a growth chamber. After ten days, the dry weight of the seedling was obtained after oven drying at 70°C. Root length, shoot length, seed germination percentage, seedling growth rate (SLGR), the weight of mobilized seed reserve (WMSR), seed reserve depletion (SRDP), and seed reserve utilization efficiency (SRUE) were measured.
Results: Based on the preliminary results using Taguchi method, the -15 °C stratification treatments under salinity and drought, 6 and 9 min of exposure to ultrasonic waves under salinity and drought, and magnetic field intensity of 250 mT for 6 and 9 h were chosen for the experiment of salinity and drought, respectively. In salinity experiment, the maximum root length (23.47 mm), shoot length (15.76 mm), weight of mobilized seed reserve (0.119 mg per seed), and seed reserve depletion percentage (58.9 %) was in scarification treatment; the maximum seed germination (47.2 %) was observed in control treatment; the maximum seedling dry weight (0.195 mg) was identified in magnetic field treatment; and the maximum seed reserves utilization efficiency (0.665 mg.mg.seed-1) was obtained in ultrasonic waves treatments. In drought experiment, the maximum root length (22.84 mm), shoot length (8.09 mm), seed germination (49.93 %), the weight of mobilized seed reserve (0.096 mg per seed), and seed reserve depletion percentage (43.1 %) was measured in ultrasonic treatment; the maximum seedling dry weight (0.09 mg) was found in magnetic field treatment; and the maximum SRUE (0.516 mg.mg.seed-1) was observed in control treatment.
Conclusions: According to the results, there is a direct relationship between the decline in seedling dry weight and the decline in the weight of mobilized seed reserve. However, the scarification and ultrasonic waves' treatments had significant effects on seedlings resistance to salinity and drought, respectively. Furthermore, the use of ultrasonic waves and scarification produced higher germination percentage and more vigorous seedlings under drought and saline conditions. In terms of germination and seedling growth, the differences among the treatments increased by the increase in stress intensity. This advantage led to greater seed reserve utilization. Moreover, pre-treatment methods resulted in longer cotyledon length and improvement in vigorous seedlings. Future studies should focus on the study of enzymes activity and/or hormones affecting seed reserve utilization rate in response to drought and salinity stress.

 
Highlights:
1- The most sensitive growth stage of annual medic (seedling production stage) to salinity and drought stress was evaluated.
2- Various pre-treatments to improve the germination of annual medic to enter crop rotation in arid and semi-arid regions due to self-seeding and short growing period were investigated.

Majid Ghanbari, Seyed Ali Mohammad Modarres-Sanavy, Ali Mokhtassi-Bidgoli,
Volume 8, Issue 1 (9-2021)
Abstract

Extended Abstract
Introduction: Medicinal herbs are of particular importance in the treatment and prevention of diseases. Indian Cheese Maker has strengthening, liver repair, anti-inflammatory properties and is useful in the treatment of bronchitis, asthma, wounds, neurological disorders such as Parkinson's and Alzheimer's. Evaluation of seed quality as a propagating organ and the most important input for crop production and medicinal products has a special place in seed production, control and certification. Studying germination and biological properties of seeds of medicinal plants and methods of breaking dormancy in them are among basic and primary studies of domestication of medicinal plants. In the meantime, scrubbing with abrasives changes the integrity of the seed shell and allows the seeds to be permeable to water and gases. The researchers stated that the dormancy of seeds containing inhibitory metabolic materials can be reduced by removing the seed shell through mechanical scarification and osmopriming. For this purpose, the effect of scarification and potassium nitrate on germination and enzymatic properties of Indian Cheese Maker was evaluated.
Material and Method: This study was conducted as factorial based on a completely randomized design with three replications during 2015-16 at the laboratory of Department of Agronomy, Tarbiat Modares University. Potassium nitrate solution (0, 0.5, 1 and 1.5 mg.l-1 from KNO3), scarification (un-use and scarification with soft sanding) and osmopriming durations (8, 16, 24 and 32 hour) were experimental factors. The experiment was performed on Indian Cheese Maker seeds, landrace of Khash. Petri dishes were placed in a germinator at 25 ° C and in full lighting for 14 days. In this experiment, germination rate and percentage of germination, mean of germination time and daily germination, seed vigority, alpha and beta amylase were measured.
Results: The results of the experiment showed that in scarification, the highest germination percentage (69.47%) was obtained by seed priming at a concentration of 1.5 mg.l-1 potassium nitrate for 19 hours under abrasion. In scarification, germination rate increased at 16 and 32 hour, 0.62 and 1.17 No.day-1 for each mg.l-1 of potassium nitrate. The highest daily mean germination (0.15) was observed at 1.5 mg.l-1 potassium nitrate and 24 hour time and decreased to 8 hours mean germination time (7.39 days) by reducing pretreatment time. Also, the highest mean germination time (9.35 days) was observed in 32 hours pretreatment with potassium nitrate and the highest mean germination time in non-scarification condition (9.13 days) and in scarification condition decreased with mean of germination time (8.04 days). The activity of alpha and beta-amylase germination enzymes was affected by different concentrations of potassium nitrate and scarification and at high concentrations of potassium nitrate the activity of these enzymes decreased.
Conclusions: In general, application of potassium nitrate osmopriming, by improving the activity of germination enzymes and increasing seed germination properties of Indian Cheese Maker, increased the activity of hydrolyzing enzymes in the endosperm of germinated seeds, which reduced the mean germination time, increased germination rate and germination percentage. In general, seed scarification with low concentrations of potassium nitrate at 16 to 24 hours is recommended for breaking seed dormancy of Indian Cheese Maker.

 
Highlights:
  1. Germination rate and percentage of Indian Cheese Maker seed were monitored by osmopriming and scarification.
  2. The role of α and β amylase germination enzymes in accelerating dormancy breaking of Indian Cheese Maker was studied.
  3. Mean time and mean daily germination during the dormancy breaking process of Indian Cheese Maker were estimated.

Marzieh Besharati-Far, Gholamrez Khajoei-Nejad, Enayatollah Tohidi-Nejad, Jalal Ghanbari,
Volume 9, Issue 2 (3-2023)
Abstract

Extended Abstract
Introduction: The application of different physical, chemical, and hormonal treatments mainly improves the germination of plants such as Dracocephalum kotschyi Boiss that have a seed dormancy mechanism. However, the interaction effects of germination, temperature, pretreatment with sulfuric acid, treatment with gibberellic acid and mycorrhiza on D. kotschyi germination have not been studied. Therefore, this experiment was performed in vitro to study the effect of seed pretreatment on improvement of germination characteristics of D. kotschyi seed.
Materials and Methods: The treatments studied in this experiment included (1) pretreatment of seed coat with sulfuric acid (97-95 %, for 10 min) and non-pretreatment (distilled water); (2) different treatments including treatments with concentrations of 0, 250, and 500 mg L-1 gibberellic acid (GA) or inoculation with mycorrhiza suspension in two separate experiments; and (3) two temperature treatments; room and refrigerator (about 4 °C) temperatures. The experiment was performed as a factorial based on a completely randomized design with four replications and different germination and initial seedling growth indices were examined.
Results: Gibberellic acid application at room temperature resulted in a significant increase in germination percentage and rate, whereas there was no significant difference between different levels of gibberellic acid and control at 4 °C. Similarly, the application of 250 mg L-1 GA improved seedling length and seedling vigor index at room temperature. While pretreatment with sulfuric acid significantly reduced germination and seedling growth indices compared to non-pretreatment, inoculation with mycorrhiza suspension in both pretreatment conditions compensated the germination reduction caused by sulfuric acid pretreatment by improving germination. Similarly, while the highest seedling length and vigor were obtained from mycorrhizal treatment at room temperature in non-pretreatment with sulfuric acid, at 4 ° C, inoculation with mycorrhiza also significantly reduced the loss in seedling length and seedling vigor index caused by sulfuric acid application.
Conclusion: According to the findings, it seems that the application of 250 mg L-1 GA at room temperature can be considered to improve the germination trend of D. kotschyi. Also, according to the results, treatment with mycorrhiza in sulfuric acid-free treatment at room temperature can be recommended as optimal conditions to improve the germination of D. kotschyi.

Highlights:
1- The interaction effect of chemical pretreatment with biological and hormonal treatments on the germination of Dracocephalum kotschyi was investigated.
2- The application of gibberellic acid at room temperature improved germination compared to the control, whereas it had no effect on germination at 4 °C.
3- Application of mycorrhiza reduced germination loss caused by pretreatment with sulfuric acid and led to maximum germination and seedling growth.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.