Search published articles


Showing 9 results for Radicle

Sayyed Jalil Mirmahmood, Mohammad Javad Ahmadi-Lahijani, Yahya Emam,
Volume 1, Issue 2 (1-2015)
Abstract

Osmotic stress is the most important of the abiotic stresses that lead to limitation of growth and yield in rapeseed. This study was conducted to examine the effect of cycocel seed priming on osmotic stress tolerance in germination and early growth stages of rapeseed, as a factorial experiment based on completely randomized design at Agriculture College of Shiraz University in 2012. The treatments included seed priming in three cycocel concentrations: 0 (without priming as control), 2.5 and 3.5 g L-1 and osmotic stress in five levels: 0 (as control), -0.3, -0.6, -0.9 and -1.2 MPa using polyethylene glycol. The results showed that osmotic stress was significantly reduced germination percentage (15.1%), germination rate (15.3%), radicle length (29.5%), plumule length (31.6%), radicle fresh weight (22.4%), plumule fresh weight (37.6%) and vigor index (39.9%). Furthermore, osmotic stress leads to increase radicle to plumule fresh weight and radicle to plumule length ratio as 6.8 and 24.3 percent, respectively. Seed priming with cycocel reduced the adverse effects of osmotic stress on measured parameters. Although, there was no positive effect on germination percentage and rate under osmotic and nonosmotic conditions for cycocel in both concentrations, but cycocel at 3.5 g L-1 appeared to have a greater positive effect than 2.5 g L-1. Considering positive impact of cycocel seed priming on the reduction adverse effects of osmotic stress further research on cycocel seed priming and osmotic stress tolerance is recommended under field conditions.


Bita Oskouei, Eslam Majidi-Hervan, Aidin Hamidi, Foad Moradi, Ali Moghaddam,
Volume 2, Issue 2 (2-2016)
Abstract

This experiment was conducted as a factorial experiment based on a completely randomized design with three replications at two locations: Agricultural and natural resource center of Ardebil province (Moghan) and seed and plant certification and registration institute of Karaj in 2013. The treatments included: planting date in three levels (10-May, 25-May and 9-Jun), seed moisture content at harvest time in four levels (30%, 25, 20 and 15) and seed size in three levels (flat, round and medium). The measured traits were a standard germination test, mean time of germination, seedling weight and length vigor index, germination percent in radical emergence test and germination percent in cold test. The results illustrated that delayed planting caused reduction of seed quality and this reduction was more obvious in delayed harvest (15%), also the reduction rate in round seeds was more than flattered and medium seeds. The minimum percentage of germination and vigor were seen in round seeds of third planting date and moisture harvest by 15%. So it is recommended for corn seed production to sow the seeds before the last week of May and when seed moisture content reached 30 percent, cob harvesting should be started and the harvest not is delayed.


Maryam Janalizadeh, Ahmad Nezami, Hamidreza Khazaie, Hassan Feizi, Morteza Goldani,
Volume 3, Issue 1 (8-2016)
Abstract

Priming of seeds by magnetic fields (magneto priming) is proposed as an ecological, useful and low-priced method for improvement of seed germination and plant emergence. In order to evaluate the germination behavior of sesame seeds affected by magnetic fields, an experiment was conducted as a completely randomized design with 22 treatments (non-exposure to magnetic fields (control) and 21 magneto priming treatments) with three replications at the college of agriculture, the Ferdowsi University of Mashhad in 2014. the seed of sesame put into a plastic bag bulky and was treated with different intensity of magnetic fields (25, 50, 75 and 100 mT) for several times (10, 20, 30, 60 and 120 minutes). For assessment of germination traits of sesame under constant magnetic field conditions, magnetic tapes with three mT strength were used in each Petri dish throughout the experiment. Results showed that magnetic fields had no significant effects on final germination percentage and mean germination time and all magnetic treatments except for 75 mT at 60 minutes indicated reducing effects on germination percentage in comparison to control. Priming of seeds with magnetic fields in 50 mT strength for 20 minutes led to the increment of germination rate compared to control treatment but all levels of 100mT treatment caused a reduction in germination rate than control. The most radicle length, seedling length and seedling vigor length index belong to 75 mT at 60 minutes treatment and the most seedling dry weight and seedling vigor weight index related to 100 mT for 20 minutes treatment. Ranking of treatments showed that exposure of seeds for one hour in 75 mT and 10 minutes in 25 mT magnetic fields strength had the best outcomes.


Marjan Diyanat, Seyyed Meisam Hosseini,
Volume 3, Issue 1 (8-2016)
Abstract

In order to study the responses of redstem filaree (Erodium cicutarium L.) seed germination to temperature levels, an experiment was carried out in a completely randomized design with four replications and twelve levels of temperature (0, 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40 0C). Results showed that the effect of treatments on germination properties of redstem was significant, so the highest percentage of germination was achieved at 150C and reduced with increasing temperature and was totally inhibited at 40ºC. Based on a linear regression between germination rate and temperature, the cardinal temperatures: minimum (Tmin), optimum (To) and maximum (Tmax) were determined: 0, 15.20 and 37.18 ºC, respectively. A significant difference was not observed in plumule length at a range of 5-30°C that showed that it is less sensitive to temperature in comparison with root length. Highest wet-dry weight was achieved at 20 °C that was not different by 10, 12 and 20°C. Above results suggest that redstem failure could grow in a wide range of growing conditions, but prefers temperate zones. The results of this study are important to understanding thermal requirements and improvement of management strategies of redstem filaree.


Ali Namvar, Raouf Seyed Sharifi, Hashem Hadi,
Volume 4, Issue 2 (3-2018)
Abstract

In order to study the effects of different levels of salinity on germination components of wheat cultivars, a factorial experiment was conducted based on a completely randomized design with three replications. Experimental factors were wheat cultivars at eight levels (Saysons, Gaspard, Finkan, MV-17, Chamran, Sardari, Atila-4 and Azar-2) and six levels of salinity (0, 25, 50, 100, 150 and 200 mM NaCl). The results indicated that salinity had significant effects on all of the traits studied (i.e., radicle length and dry weight, plumule length and dry weight, remaining seed weight after germination, seedling weight, the longest radicle and plumule, number of radicle per seed, ratio of radicle weight to plumule weight and rate, and uniformity and percentage of germination). All of these traits declined with an increase in the salinity (except the ratio of radicle weight to plumule weight, remaining seed weight after germination and seedling weight). The highest ratio of radicle weight to plumule weight, remaining seed weight after germination and seedling weight were recorded in the salinity of 200 mM NaCl. The cultivars showed significant effects on all of the traits studied (except remaining seed weight after germination and seedling weight). Chamran cultivar showed the highest number of radicle per seed, the ratio of radicle weight to plumule weight, rate and percentage of germination. The highest radicle length and the longest radicle were obtained from the Sardari cultivar while in Azar-2 cultivar it was vice versa in plumule. Atila-4 cultivar showed the highest radicle and plumule weight. It seems that compared with other cultivars, out of the cultivars studied, Chamran, Azar-2, Sardari and Atila-4 were more resistant to salinity stress.

 
 Highlights:

  1. Introduction of wheat cultivars with more tolerance to salinity conditions at germination stage.
  2. Study of eight different wheat cultivars in terms of germination indices under salinity stress conditions.

Ebrahim Gholamalipour Alamdari, Behroz Seifolahi, Zeinab Avarseji, Abbass Biabavi,
Volume 5, Issue 1 (9-2018)
Abstract

Extended abstract
Introduction: Generally speaking, plants contain various organic compounds which could influence the behavior of plant communities. These compounds are basically secondary metabolites which are found in various parts of plants such as rhizomes, roots, stems, leaves, flowers, fruits and seeds. The objective of the present study was to investigate the hetrotoxicity potential of different organs of Euphorbia maculata weed on traits of germination, chlorophyll and carotenoids pigments of wheat cultivars.
Material and Methods:  In this experiment Euphorbia maculate weed was collected at full maturity stage from the Moghan region, located in Ardebil Province. Then various organs of Euphorbia maculate such as stems, leaves, and fruits were separated from each other. Another treatment namely, a mixture of different organs, was also made. This experiment was carried out as a factorial, adopting a completely randomized design with three replications in Weeds Science Laboratory of Gonbad–e- Kavous University in 2017. The first factor was wheat cultivar at two levels, consisting of Morvarid and Gonbad and organs in 5 levels (control, stem, leaf, fruit and their mixture, with equal amount of each) were the second factor. For the bioassay experiment, from each organ and their mixture, 5% suspension (w/v) was prepared, using distilled water. 10 ml of concentrated extract of each organ was applied on 50 sterilized seeds of cultivars of interest in a petri dish containing filter paper. After 7 days, traits such as rate and percentage of germination, radical length, shoot length, seed length vigor index, chlorophyll a, b and total content and carotenoids content were measured.
Results:  The results showed that unlike the Morvarid cultivar, germination rate and germination percentage of the Gonbad cultivar significantly decreased, using aqueous extract of various organs of Euphorbia maculata and their mixture. The results also showed that the inhibition effect of fruit and leaf organs on the rate and germination percentage of the Gonbad cultivar were higher than that of other organs and their mixture. According to the results, stem, leaf and fruit extracts had a higher toxic effect on the radical length, compared with the shoot length of the Gonbad cultivar. The results of mean comparison also showed that seed length vigor index of the Morvarid and Gonbad cultivars decreased, due to hetrotoxic compounds of all organs of Euphorbia maculate. In terms of this trait, the highest significant decrease was found in the Gonbad cultivar, which was about 84.13%, compared with the control. In this study, the decreases in the photosynthesis pigments of total chlorophyll and carotenoids in both cultivars with aqueous extract of stem, leaf and fruit organs of Euphorbia maculata were different. The highest decrease of pigments was found in the fruit organ of the Morvarid cultivar. However, aqueous extract of mixed organs had a significant decrease and increase on the content of these pigments in the Morvarid and the Gonbad cultivars, respectively, as compared with the control. This may be due to differences in the quantity and quality of some allelochemicals as well as different reactions of the cultivars.
Conclusions:  Given the evidence of the hetrotoxicity potential of various organs of Euphorbia maculata weed on traits of germination as well as the chlorophyll and carotenoids content of wheat cultivars, it is advisable to exploit huge biomass generated by these luxuriantly growing weeds as bio-compounds in sustainable agriculture.
 
 
Highlights:
1- Study of allelopathic effect of Euphorbia maculate on various wheat cultivars in farms of the Moghan plain.
2- Aqeous extract of Euphorbia maculate organs significantly reduces germination as well as seedling growth of the Gonbad cultivar.
Moazzameh Eskandarinasab, Mohammad Rafieiolhossaini, Parto Roshandel, Mahmoud Reza Tadayon,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: The use of nanotechnology as a diverse and applied discipline is ongoing in almost all areas of science. Fertilizers and nano-nutrients have the effective properties which help the production of plants depending on their needs to regulate the plant growth. Plants under stress conditions are willing to produce natural nanoparticles to continue their growth. Nano TiO2 has a high photocatalytic effect and as a catalyst, it is mainly used in water, electronic devices, conversion and storage equipment of Energy as suspension. Sources of SiO2 are very diverse, including natural nanoparticles, anthropogenic particles and engineering nanoparticles. Although, silicon in many crops is not an essential element for growth, it has beneficial effects on plants growth and development. Today, carbon nanotubes are one of the most important materials in industrial programs. These materials, with different methods and specific properties, can play an important role in the production of composite materials, application in medicine, electronic and energy storage. The Niger plant, with the scientific name of Goizotia abyssinica (L.F) Cass, belongs to the Asteraceae family. Its seed, are used in pharmacy, food industry, green manure and for feeding birds and cows. Therefore, the purpose of this experiment was to investigate the effect of type and concentration of three nanoparticles on some of germination characteristics and anthocyanins content in Niger medicinal-oily plant.
 Materials and Methods: In order to evaluate the effect of three nanoparticles on seed germination of Niger, an experiment was conducted as factorial in a completely randomized design with four replications. The treatments of TiO2, SiO2, and CNT were as the first factor while their concentrations in four levels (zero, 10, 30 and 60 mg/l) were as the second factor. In this study the traits of germination percentage, germination rate and mean of daily germination, germination and vigour index, length, fresh and dry weight of radicle and plumule, anthocyanin content and radicle resistance percentage were measured. 
 Results: The germination percentage, germination rate and mean of daily germination decreased by increasing of nanoparticles concentration. The favorable effect of TiO2 on germination index at the concentration of 30 mg/l and radicle dry weight at the concentration of 10 mg/l, was gained compared to control. The positive effect SiO2 on germination index and radicle dry weight at the concentrations of 10 and 60 mg/l, the anthocyanin content and the fresh and dry weight of plumule at the concentration of 60 mg/l was obtained compared to control. Also, the appropriate effect of CNT on germination index at the concentration of 10 and 30 mg/l, the anthocyanin content and radicle dry weight at the concentration of 60 mg/l and plumule fresh weight at the concentration of 30 mg/l, was observed.
Conclusions: According to the results of this study, it seems that the effect of nanoparticles in plants, in addition to the plant, species, type and concentration of nanoparticles, varies depending on the growth stage and physiology of the plant. It seems that nanoparticles at some concentrations can increase the water absorption of seeds and increase seedling growth with their positive effects. Anthocyanins are produced by exposure to stress due to their antioxidant activity. In general, it can be stated that increasing the concentration of nanoparticles caused and increased the oxidative stress in plant. Therefore, it is recommended by investigating the bad effects of nanoparticles on plants, if necessary, use nanoparticles at low concentrations (less than 60 mg/l) to increase the plant's efficiency.
 
Highlights:
  1. The effect of nanoparticles kind and concentration on seed germination indices and anthocyanin content of Niger seedling.
  2. Investigating the interaction of nanoparticle type and concentration as the physical priming factor of seeds on seed germination of multi-purpose Niger plant.

Bahman Fazeli-Nasab, Hamideh Khajeh, Ramin Piri, Zahra Moradian,
Volume 9, Issue 2 (3-2023)
Abstract

Extended Abstract
Introduction: Lallemantia royleana is an annual herbaceous plant of Lamiaceae family in different parts of Europe, the Middle East, and especially Iran. Cyamopsis tetragonoloba L. is a plant of the legume family. A common feature between these two plants is hydrocolloid gums, which stabilize some food emulsions by absorbing water and increasing the viscosity or forming a gel in the aqueous phase. Due to its diverse and rich vegetation, Iran can produce countless types of plant gums, and many seeds such as Lallemantia royleana and Cyamopsis tetragonoloba contain valuable gums. Considering the important therapeutic and industrial applications of C. tetragonoloba and L. royleanaplants and the need for more information and reports on determining the best humic acid level and salt stress tolerance of these plants, the purpose of this research is to investigate the tolerance of two L.  royleana and C. tetragonoloba plants to salinity stress in the germination stage and the initial stages of the growth of two plants under the humic acid application.
Materials and Methods: The experiment was carried out as factorial in a completely randomized design with three replications at the seed laboratory of the Faculty of Agriculture of Zabol University in 1400. In this experiment, salinity stress was investigated using sodium chloride at control (no salinity), 70, 140, 210 mM levels and humic acid at (0, 40, 80, and 120 mg/L) levels. Humic acid solution at different salinity levels was added to each petri dish containing 25 seeds.
Results: The results showed that salinity stress decreased germination percentage, radicle length, plumule length, seedling length and seedling dry weight of C. tetragonoloba. In this plant, the germination percentage decreased by 35.34% compared to the control as the salinity stress level increased to 210 mM, and with the increase of the stress to more than 140 mM, a significant decrease in the germination percentage was observed. The maximum plumule length of L. royleanaplants was obtained in 70 mM salinity treatment and 40 mg/L fertilizer level. The maximum radicle length in the L.  royleanaplants plant was obtained in the treatment of 40 mg/L of humic acid at a 70 mM salinity stress level. Also, the results showed that the maximum radicle length (1.46 cm) in the C.  tetragonoloba plant was related to humic acid pretreatment at 70 and 140 mM salinity and fertilizer levels of 40 and 80 mg/L.
Conclusion: In general, it can be stated that the germination indices significantly decreased under stress conditions, and this indicates that humic acid is a suitable pretreatment that can improve the growth indices of C. tetragonoloba and L.  royleanaplants under stressed and non-stressed conditions. With the application of humic acid at all salinity levels except 210 mM, the germination indices in the two mentioned plants were in a favorable condition.

Highlight:
1- The salinity stress tolerance threshold was studied in Cyamopsis tetragonoloba and Lallemantia plants.
2- Humic acid fertilizer in this study mitigated the destructive effects of salinity stress in Cyamopsis tetragonoloba and Lallemantia plants.

Vahid Mohasseli, Mahmood Izadi, Mohammad Hadi Roohian,
Volume 9, Issue 2 (3-2023)
Abstract

Extended Abstract
Introduction: Lentil is a dicot, annual, and cross-pollinating plant that is found mainly in Fars, Khuzestan and East Azerbaijan provinces. The seeds of the plant are used in the treatment of cholesterol and blood sugar. Abiotic stresses such as salinity are important factors in reducing plant growth and yield. Although salinity can remarkably affect plant growth, its intensity depends on duration, type, plant species and growth stage. The greatest effect of salinity during the germination process is on germination rate and percentage and radicle and plumule length, as the increased concentration of ions in Therefore, studying of plant germination under salt stress and application of compounds such as salicylic acid to improve plant tolerance to salinity in saline areas can serve as a guideline for the cultivation of plants under such conditions. Therefore, this research aimed to study the effect of salicylic acid on the germination and growth parameters of Securigera securidaca L. under salinity conditions.
Materials and Methods: The experiment was conducted as a factorial in a completely randomized design with three replications under the germinator conditions in the laboratory of Fars Agricultural and Natural Resources Research and Education Center. Experimental treatments consisted of 5 levels of salinity stress (0, -0.3, -0.6, -0.9 and -1.2 MPa) and 3 levels of salicylic acid (0, 1 and 2 mM). The seeds were soaked in the treatments for 24h. At the end of the experiment (8 days), germination percentage and rate, seed vigor index, and fresh and dry weight of radicle and plumule were measured and calculated.
Results: The results showed that all plant responses were affected by different osmotic potentials at p<0.01 compared with the control. The highest germination percentage was 91.11 under stress-free conditions and the application of salicylic acid at 1 mM. During the comparison of means for salicylic acid, the highest mean plumule length (10.88 mm) was related to 1 mM salicylic acid solution and the lowest (6.35 mm) was for control treatment, which showed an increase of 71.34%. Also, soaking seeds with salicylic acid caused an 84.98% increase in root fresh weight. An increase in salinity led to 96.30 and 94.62% decrease in radicle and plumule dry weights, respectively.
Conclusions: The study showed that soaking seeds with salicylic acid improved germination under salt stress conditions. Therefore, seed placement in salicylic acid solution (1 Mm) prior to cultivation can be used to improve the germination of Securigera securidaca L. under salinity conditions.

Highlights:
1-­ The most suitable concentration of salicylic acid for seeds soaking to increase plant tolerance to salinity stress is 1 mM.
2-­ Soaking of Securigera securidaca L. seeds in salicylic acid increases germination, seed vigor index and radicle and plumule length and weight under saline and non-saline conditions.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.