Search published articles


Showing 3 results for Pseudomonas

Hassan Habibi, Mehdi Agihghi Shahverdi, Zahra Nasiri, Mohammadreza Chaichi, Mohammad Hossein Fotokian,
Volume 1, Issue 2 (1-2015)
Abstract

The effect of seed rate of alfalfa (Medicago sativa L.) and efficiency of plant growth promoting bacteria (PGPR) that facilitates phosphorus uptake with different doses of phosphate fertilizer was evaluated on seed quality. For this purpose, the germination and seed vigor tests before and after accelerated aging were performed in a split split plot experiment based on randomized complete block design with three replications in 2010 in the field of education and research in the College of Agriculture and Natural Resources, Tehran University, Karaj. Phosphorus factor at 4 levels (0, 30, 60 and 90 kg Phosphorus.ha-1) in main plots, PGPR (Pseudomonas) in three levels (no bacteria, bacterial strains, No. 9 and bacterial strains No. 41) in subplots and rate of seed factors on three levels (2, 6, and 10 kg of seed per hectare) were the sub-subplots. The results showed the highest rate of germination and seed vigor obtained by use of 6 kg seeds per hectare, PGPR No.41 strains with 30 kg Phosphorus per hectare and after accelerated aging. The highest rate of germination and seed vigor at 10 kg of seed per hectare were found for PGPR No.41 strains, with 60 kg Phosphorus ha-1 treatments. After accelerated aging practices to achieve maximum germination index and vigor, seed rates and phosphorus requirement were more than standard conditions. Based on obtained results for the storage conditions, bacterial strains No. 41 had a better effect on increasing seed vigor than bacterial strains No. 9. To produce alfalfa seed with high vigor and obtain better results, use of optimum seed rates and phosphorus (6 and 30 kg.ha-1, respectively) along with PGPR (strain No. 41) could be considered in crop plants.


Amin Salehi, Yaghoub Behzadi, Raham Mohtashami, Nasrin Niknam,
Volume 9, Issue 2 (3-2023)
Abstract

Extended abstract
Introduction: Safflower (Carthamus tinctorius L.) is an annual oilseed crop that is adapted to arid and semi-arid regions and is considered an indigenous plant of Iran. Germination and seedling stage in the soil is one of the most important stages in the life cycle of plants. High germination rate and percentage increase the number of seedlings and the rapid successful establishment of seedlings in the soil also contributes to the suitable vegetative growth of the seedlings in later stages of life. Therefore, evaluation of germination indices and seedling establishment in the soil and finding more suitable conditions to improve these indices can have a direct impact on more successful plant cultivation. One of the methods used in this regard is priming.
Materials and Methods: In order to study the effect of plant growth-promoting bacteria and temperature treatments on germination indices and seedling growth of the safflower, this investigation was conducted based on a completely randomized block design with three replications at the Agricultural Research Laboratory of Yasouj University in 2016. Experimental factors were seven levels of temperature treatments (5, 10, 15, 20, 25, 30, 35°C) and seed priming with three strains of Pseudomonas fluorescens such as Pf 2, Pf 25 and CHA 0 and one strain of Bacillus subtilis and control (without inoculation).
Results: The results showed that 20°C temperature caused the highest germination percentage, germination rate and vigor length. Also, seeds inoculated with Pseudomonas fluorescens growth-promoting bacteria strain CHA0 had the highest germination percentage (68.74), germination rate (3.49 seeds per day) and vigor length vigor (6.22). Seedling length, dry weight and vigor weight were the other parameters that showed the best results at 20 and 25°C. Also, germination and seedling growth indices decreased by an increase or decrease in the optimum temperature. The use of plant growth-promoting bacteria causes increased activity of ascorbate and catalase enzymes, which leads to a decrease in injuries related to non-optimum temperature and improved germination indices.
Conclusion: According to our results, to accelerate the germination rate and other parameters, it is better to inoculate seeds with bacteria strains CHA0 and 25 in the temperature range of 20-25°C.

Highlights:
  1. The germination behaviour of safflower primed with bacteria varies at different temperatures.
  2. Seeds inoculated with Pseudomonas fluorescens growth-promoting bacteria of CHA0 strain had better germination conditions.
Using the 20-25°C temperature improves germination indices.

Khadijeh Momeni, Ali Moradi, Sohrab Mahmoudi, Hojatollah Latif Manesh,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract
Introduction: Due to the fineness of parsley seeds, several problems may arise, such as the impossibility of using planting machines and the displacement of seeds by water, reduced germination and growth due to increased planting depth or lack of seed establishment in the soil, and consequently, increased seeding rate. Therefore, it is necessary to use methods to increase germination ability and improve the establishment of parsley seeds and seedlings in the soil. This experiment aimed to determine the most effective biopriming and gibberellin treatments for better germination and establishment of parsley seeds.
Materials and Methods: In order to determine the best biopriming and gibberellin priming treatments on germination characteristics and establishment of parsley seed, three experiments with four replications were conducted in the seed science and technology laboratory of Yasouj University in 2015 and 2016. The first biopriming experiment was carried out using growth-stimulating bacteria in a completely randomized design with eight treatments including bacterial isolates Pseudomonas fluorescens strain 21, Bacillus biosobetyl strain, Enterobactercus cloac strain 5, also two and three compounds of these bacteria along with control treatment. The second experiment was carried out with five treatments of Trichoderma harziarum (T36, T39, T42, and T43) isolates with control treatment. Finally, the third experiment was performed as a factorial in a completely randomized design with concentrations of gibberellin hormone (0, 50, 100, and 200 ppm) and prime times (6 and 12 hours). The measured traits were seedling length, seedling dry weight, germination percentage, and seedling length vigor index.
Results: The results showed that the best treatments for the first experiment were biopriming with Enterobacter + pseudomonas, for the second experiment biopriming with T36 fungus strain, and for the third experiment 50 ppm of gibberellin prime for 6 and 12 hours. The results showed that the majority of biopriming and hormone prime treatments improved the quality of parsley seeds so that the germination percentage in control seeds was 70%. This value increased by 31% compared to control treatment following priming with growth-stimulating bacteria (Pseudomonas+ Enterobacter), which showed the highest rate among all treatments applied in this study. The use of 50 ppm of gibberellin priming for 6 and 12 hours increased germination by 19% and 14% compared to the control treatment, respectively.
Conclusion: The results of this study showed that biopriming with Pseudomonas + enterobacter had the greatest effect on improving the quality and germination characteristics of parsley seed. In general, biopriming except for T42 fungi, and also gibberellin priming showed improvement in the quality and germination properties of parsley seed.

Highlights:
1. The effects of using biopriming and hormone prime are common, while it is not clear for parsley.
2. Biopriming with Pseudomonas+ enterobacter had the greatest effect on improving the quality and germination characteristics of parsley seeds.
3. Priming with T42 fungus reduced the quality and germination characteristics of parsley seeds.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.