Search published articles


Showing 2 results for Modeling

Mohsen Malek, Farshid Ghaderi-Far, Benjamin Torabi, Hamidreza Sadeghipour,
Volume 7, Issue 1 (9-2020)
Abstract



Extended Abstract
Introduction: Seeds, like other materials, are hygroscopic and exchange moisture with their surroundings. The changes in the moisture of seeds during storage depend on their hygroscopic nature and this feature plays an important role in determining the seed quality and longevity. Furthermore, studying the hygroscopic characteristics if seeds can be useful in seed storage studies as well as in commercial applications such as drying and seeds processing. Therefore, in this study, the relationship between seed moisture content and relative humidity in seed of rapeseed cultivars was studied.
Material and Methods: In this study, the relationship between the ambient relative humidity and seed moisture content of three rapeseed cultivars at 10, 20 and 30 °C was investigated using hygroscopic equilibrium curves. Therefore, water desorption and absorption curves were studied separately. Water absorption and desorption curves were obtained by drying the seeds at 1% relative humidity and seed hydration at 100% relative humidity, respectively, followed by transferring the seeds to different relative humidities at different temperatures and finally determining the equilibrium moisture content of the seeds. It should be noted that glycerol and sulfuric acid solutions were used to creation different relative humidity. Finally, the relationship between seeds moisture content against the relative humidity was quantified by fitting the D’Arcy-Watt equation.
Results: The results indicated that the seeds moisture content varied in cultivars and temperatures at different relative humidities. Also, there was a difference between water desorption and absorption curves in all cultivars and temperatures; desorption curves were generally higher than water absorption curves. The greatest difference among the cultivars regarding seed moisture content was observed at 100% relative humidity, and this difference was less severe at lower relative humidities. Also, the highest seed moisture content of rapeseed cultivars was observed at 20 °C and 100% relative humidity, and the lowest seed moisture content was recorded at 30 °C and 1% relative humidity.
Conclusions: According to the results, it was found that the relationship between seed moisture content and relative humidity followed a sigmoidal function, and this relationship would also vary depending on cultivar and temperature. There was also a difference between the adsorption and desorption curves, which is called "hysteresis", and showed that the seed moisture content at a constant relative humidity was generally higher in the state of dehydration compared with that in the state of hydration. Due to this event, desorption curve is situated higher than the absorption curve.

Highlights:
  1. Response to hygroscopic equilibrium curves in seeds of different rapeseed cultivars was compared.
  2. Sulfuric acid and glycerol solutions were used to create different relative humidity.

Meysam Miri, Mohammdreza Amerian, Mohsen Edalat, Mehdi Baradaran Firouzabadi, Hasan Makarian,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract
 Introduction: Germination is considered the first and most important stage of establishment and consequently, successful competition which is influenced by genetic and environmental factors. Among the environmental factors influencing the germination, temperature and light are the most important ones. Using different models, the germination response of seeds to temperature can be quantified; therefore, this study was performed to investigate the effect of temperature on germination and to quantify the germination response of Buckwheat seed (Fagopyrum esculentum Moenc) to temperature using nonlinear regression models and thermal-time model.
Materials and methods: The seeds were germinated in 4 replications of 25 seeds under 8 constant temperature treatments (5, 10, 15, 20, 25, 30, 35 and 40 ° C). Using a three-parameter logistic model, Buckwheat seed germination was quantified at different temperature levels and the percentage and time to reach 50% germination were obtained. Four nonlinear regression models and a thermal-time model were used to quantify the response of Buckwheat seed germination rate to temperature. To compare the models and determine the most appropriate model, the root mean square error index (RMSE), coefficient of determination (R2), coefficient of variation (CV) and standard error (SE) were used for the observed germination rate versus the predicted germination rate.
Results: The results indicated that temperature affected the seedling length, normal seedling percentage, seed vigor and the germination rate as well as germination percentage. Also, the results showed that germination characteristics increased with increasing temperature up to 20 and 25 °C. Comparison of the three models based on the root mean square error (RMSE) of germination time, the coefficient of determination (R2), CV and SE, the best model to determine the cardinal temperatures of Fagopyrum esculentum was the dent-like model. The results of thermal-time model showed that the base temperature of Fagopyrum esculentum seeds was 4.01 ° C and the thermal-time coefficient was 1242.6 h° C.
Conclusion: Utilization of non-linear regression models (segmented, dent-like and beta) and thermal-time model to quantify the germination response of Fagopyrum esculentum response to different temperatures led to acceptable results. Therefore, germination rate and percentage may be predicted using the outputs of these models at different temperatures.

Highlights:
  1. The best temperature for Fagopyrum esculentum Moenc. seed germination is 20-25 Celsius.
  2. The dent-like model was determined the most appropriate model for estimating the cardinal temperatures of Buckwheat.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.