Search published articles


Showing 21 results for Line

Mansour Taghvaei, Neda Aliolad,
Volume 1, Issue 2 (1-2015)
Abstract

Trittipyrum is an important annual grass plant for forage production in arid and semiarid regions. The effects of drought stress on Trittipyrum lines were evaluated in the field experiment in a randomized complete block design with a factorial experiment involving three replications in 2012. Treatments were water stress (field capacity (FC), 75% of FC, 50% of FC and 25% of FC throughout the experimental period and 13 primary Trittipyrum lines ((St/b)(Cr/b)F4, (Ma/b)(Cr/b)F4, (Ma/b)(Cr/b)F3, (Ka/b)(Cr/b)F2, (Ka/b)(Cr/b)F3, (Ka/b)(Cr/b)F5, (Ka/b)(Cr/b)F6, La(4b,4d)/b, St/b, Cr/b, La/b, Ka/b, Az/b). The results showed that drought stress had significant effects on seedling traits. Drought stress significantly decreased shoot length, root length, shoot dry weight, root dry weight, seedling dry weight, seedling length vigor index and seedling weight vigor index. The results of mean comparison revealed that (az/b)(cr/b)F5 and Kz/b lines were the most sensitive and the most tolerant lines to drought stress in early vigor stage, respectively. Although the response of Trittipyrum lines was different to drought stress; but the result indicated that Trittipyrum lines are sensitive to drought at emergence stage.

Shayeste Bemany, Batool Mahdavi, Benyamin Torabi,
Volume 2, Issue 1 (9-2015)
Abstract

In order to study the effect of alkaline stress on seed germination and seedling biochemical characteristics of two safflower cultivars, a laboratory experiment was conducted based on a completely randomized design with three replications in the Vali-e-Asr University of Rafsanjan. Experimental factors included the levels of alkaline with sodium bicarbonate (0, 10, 20, 30, 40, 50 and 60 mM) and two cultivars of safflower (Soffeh and 411). The result showed that alkaline stress had significant effects on seed germination characteristics. Increasing alkaline stress reduced percentage and rate of germination, length and dry weights of shoots and roots, K+ concentration and K+/Na+. However, alkaline increased malondialdehyde content, proline, total carbohydrate and Na+ concentration. In alkaline stress condition, there was a significant difference between cultivars in length of shoots and roots, proline content and K+ concentration. 411 cultivar showed notable superiority compared to Soffeh cultivar. Both cultivars had the highest malondialdehyde at 60 mM alkalinity and the lowest malondialdehyde obtained in Soffeh cultivar and control. The result of this research showed that 411 cultivar was better than Soffeh cultivar in proline and soluble sugar content, but these two cultivars had no significant differences in other traits.


Zeinab Alipoor, Sohrab Mahmodi,
Volume 2, Issue 2 (2-2016)
Abstract

In order to determinate the cardinal temperatures and investigate the effect of temperature on seed germination and seedling growth of Securigera securidaca, a study was conducted in a completely randomized design with 8 temperature treatments (5, 10, 15, 20, 25, 30, 35 and 40oC) and four replications in research laboratory of faculty of agriculture at the Birjand University in 2013. A two-segmented linear regression model was fitted between germination rate and temperatures to determine cardinal temperatures for germination. Cardinal (minimum, optimum and maximum) temperatures of germination were determined as -1, 22.5 and 40.2oC respectively. Maximum rate and percentage of germination obtained in the range of 20-25oC. Maximum of radicle length and dry weight, maximum of caulicle length and dry weight and maximum of vigor seedling were obtained in 20oC,10-20oC and 5-30oC respectively. Maximum and minimum germination uniformity (GU) was obtained in 25 and 5oC. 


Sayyed Ali Tabatabaei, Omid Ansari,
Volume 3, Issue 1 (8-2016)
Abstract

The objective of this research was to evaluate the effect of salicylic acid and gibberellic acid on germination characteristics and changes of proline, protein and catalase activity of Brassica napus seedlings under Cu(SO4) stress. The experimental design was factorial with complete randomized design as a base design with 3 replications. The first factor was 4 levels of Cu(SO4) stress (0, 10, 20 and 30 mg/l), and the second factor was 4 levels of priming with salicylic acid and gibberellic acid 50 mg/l, hydro prime and control (non-priming). Results showed that with increasing levels of Cu(SO4) stress, germination characteristics (germination percentage, germination rate, normal seedling percentage, seedling length and seed vigor index) reduced and using of salicylic acid, gibberellic acid and hydro prime increased germination characteristics. The highest germination percentage (94%), germination rate (30.75 seed per day), normal seedling percentage (86.17%) seedling length (10.53 cm) and seed vigor index (9.08) were attained from priming by salicylic acid 50 ppm under non-stress conditions. Cu(SO4) stress increased proline (35%) and catalase (37%) activity but reduced protein (65%) and priming increased proline, protein and catalase activity as compared to unprimed under stress and control conditions. In this study, using priming treatment salicylic acid had usually higher germination characteristics and catalase activity, total proteins and proline content in comparison with untreated or control seeds.


Gholamhassan Ranjbar, Hossein Ghadiri,
Volume 3, Issue 2 (2-2017)
Abstract

A controlled experiment was run to quantify emergence of Kochia indica under different temperature, salinity and seeding depth levels at Yazd National Salinity Research Center in 2013. Treatments were five day/night temperature regimes: 20/10, 25/15, 30/20, 35/25 and 40/30 °C, five salinity levels: 2, 6, 10, 14 and 18 dS m-1, and seeding depth on the surface (0 mm), 5, 10 and 15 mm. Final emergence percentage, emergence rate index and elapsed time (days) to reach 50% of the maximum emergence were measured. The results showed that the highest and lowest final emergence percentages were observed at 25/15°C and 40/30°C day/night, respectively. Final emergence percentages at salinity levels of 6, 10, 14 and 18 dS m-1were, respectively, 9, 22, 36 and 57% lower than 2 dS m-1. Final emergence percentages for 5, 10 and 15 mm seeding depths were, respectively, 30, 44 and 72% lower, as compared with the placement of seeds on the soil surface. Regression analysis showed that final emergence percentage linearly decreased with increase in salinity and seeding depth levels. However, elapsed time (days) to reach 50% of the maximum emergence (T50), increased as salinity and seeding depth increased, so that the highest T50 was obtained for 18 dS m-1 and seeding depth of 15 mm. Increase in salinity and seeding depth was associated with a significant decrease in emergence rate index. In addition, using a logistic regression equation, emergence rate of K. indica was quantified on each day after sowing for each temperature-salinity combination to predict the distribution range of the plant in these situations.
 


Vahid Mansouri Gandomany, Heshmat Omidi, Mohammad Rezaei Charmahin,
Volume 3, Issue 2 (2-2017)
Abstract

In order to investigate the effect of pretreatment of chitosan biological compounds on seeds of soybean (Glycine max L. cv. Williams) under salt stress conditions, a factorial experiment was conducted, adopting a completely randomized design with three replications at Shahed University in 2015. Factors examined included the combination of chitosan at three levels (0, 0.25 and 0.5 the weight-volume) and salinity at 4 levels (0, 5, 5.7 and 10 dS/m). The results showed that the interaction of chitosan and salinity had a significant impact on seed germination characteristics such as germination percentage, germination rate, mean germination time, normal seedling and physiological characteristics such as proline and soluble sugars of shoots. In contrast to salt stress increase of 30%, and an increase of 24 and 35% of proline and soluble sugars of the shoot, pretreatment of chitosan (0.25%) improves seedling germination characteristics of soybeans. Given the impact of the treatments of chitosan on seed germination and seedling growth of soybean, it is possible to introduce 0.25% W/V chitosan as a treatment to deal with conditions of salinity.
 


Seyed Ali Tabatabaei, Omid Ansari,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: Heavy metal pollution is one of the most serious environmental problems. These metals which accumulate in food chain bring about a lot of hazards to both humans and animals. Among heavy metals, lead is considered to be the most dangerous heavy metal in the environment. It contaminates the environment through the lead-acid battery industry, paint and gasoline additives, insecticides, chemical fertilizers, car exhaust pipes and soldering. The objective of this study was to investigate the effect of Pb(NO3)2 on germination characteristics and biochemical changes of two wheat cultivars (Chamran and Kohdasht cultivars).
Materials and Methods: The objective of this research was to evaluate germination and biochemical changes of two wheat cultivars under Pb(NO3)2 stress, using three-parameter sigmoid model. The experimental design adopted was factorial with a completely randomized design, as the base design, with 3 replications. The first factor was 2 wheat cultivars (Kohdasht and Chamran), and the second factor was 6 levels of Pb(NO3)2 (0, 0.25, 0.5, 0.75, 1 and 1.5 mg.L).
Results: The results showed that with increases in levels of Pb(NO3)2 stress, germination percentage, germination rate, normal seedling percentage, seedling length, seedling weight and seed vigor index reduced for both wheat cultivars. The results of fitting three-parameter sigmoidal to characteristics indicated that the highest characteristics and X50 were obtained from the Chamran cultivar. The highest germination percentage (96%), germination rate (23 seeds per day), normal seedling percentage (93.33%), seedling length (13.07 cm), seedling weight (0.07) and seedling vigor index (12.18) were obtained from the Chamran cultivar under non-stress conditions. Pb(NO3)2 stress increased proline and catalase activity but reduced protein, proline and protein for the Chamran cultivar, as compared with the Kohdasht cultivar.
Conclusion: Generally speaking, the results showed that Pb(NO3)2 had a significant effect on germination characteristics and catalase, proline and protein of wheat. Finally, it could be said that in copper-accumulated areas, choosing proper cultivars can slightly mitigate the damages caused by copper. The Chamran cultivar seems to be a better candidate for these conditions.
 
Highlights:

  1. Evaluation of the effect of Pb(NO3)2 stress on germination characteristics of wheat.
  2. Using three-parameter sigmoid model for the evaluation of biochemical changes and germination of wheat under Pb(NO3)2 stress.

Yaser Alizadeh, Ehsan Zeidali, Hamid Hassaneian Khoshro,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: Crop rotations are practiced to eliminate the effect of monoculture, but the succeeding crop may be influenced by the phytotoxins released by the preceding crop. Among plants, Brassica species contain allelochemical compounds as glucosinolate that is, under special conditions, released to environment and affects seed germination and plant growth. Wild mustard (Sinapis arvensis L.) as a weed of 30 crops in 52 countries which has a series of allelopathic effects that prevent germination of other plants. Products of glucosinolate- like ionic thiocyanate (SCN-) inhibited the root or shoot growth of many crop species. Also volatile compounds like isoprenoid and benzenoid released from Brassica tissue degradation may suppress many crops growth. It was also found in many studies that allelochemicals, which inhibited the growth of some species at certain concentrations, might stimulate the growth of same or different species at lower concentrations. The present research was conducted to evaluate the effects of aqueous extract concentration of various mustard parts on barley seed germination and seedling growth.
Materials and Methods: In order to evaluate the allelopathic effect of mustard in agro ecosystems, a factorial experiment based on completely randomized design with three replications was carried out in botany laboratory of agriculture faculty, Illam University in 2014. Experimental treatments included five concentrations of mustards foliage and root aqueous extract (0, 10, 30, 50, and 70 percent) that were studied at germination and early growth stage of barley (cv. Abidar) in two separate experiments. In the seed germination section, the effects of aqueous extract of mustard on germination rate and germination percentage of barley seed were measured. In the study of the effect of aqueous extract of mustard on barley seedlings, weight and length of root and shoot, leaf chlorophyll content, proline and soluble sugars content were measured.
Results: Results showed that the highest amount of barley seed germination percentage and germination rate (100 and 19.5, respectively) were observed in control and the lowest amount (40 and 9.5, respectively) belonged to mustard root aqueous treatment with 70 percent concentration. The most decrease in barley seedlings length and weight were observed at the highest concentration of aqueous extract. The amount of chlorophyll a decreased from 2.39 in control to 1.66 mg per fresh weight in 70 percent concentration of aqueous extract treatment. The highest amount of proline (66.8 μM per fresh weight) in barley foliage was observed in 70 percent aqueous extract treatment. The results from this study showed that mustard allelopathic effect may be a possible mechanism controlling the barley germination and early growth stage in agro ecosystems.
Conclusion: Generally, we were able to demonstrate short term auto toxicity and possible short-term allelopathy due to mustard has harmful effects on barley including reduced seed germination and emergence of barley seedling. Depending on the concentrations of Mustard extract, allelopathic activity will vary Mustard. Further investigations are also needed to determine the influence of cultivar variations, and to identify the active compounds involved in mustard auto toxicity and Allelopathy.
  
Highlights:
1-Mustards aqueous extract reduced seed germination percentage and plant growth in barley.
2-Mustards aqueous extract increased proline and soluble sugars in barley, but it reduced amount of chlorophyll in this plant.


Farnaz Porali, Farshid Ghaderi-Far, Elias Soltani, Mohammad Hadi Palevani,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: Germination speed is one of the most important germination indices, used in most studies to compare the effects of different treatments on seed germination. Researchers use the reverse time up to 50% maximum germination (1/D50) to calculate the germination rate. One of the methods used for calculating the D50 is the utilization of nonlinear regression models such as Logestic, Gompertz, Richard, Weibull and Hill. In addition, for the purpose of calculating this parameter, simple empirical models such as the model presented by Farooq et al. and Ellis and Roberts are used. The question which arises is which of these methods has more precision predicting D50. The purpose of this study was to calculate D50, using different methods in seed germination of cotton.
Material and Methods: In this experiment, cottonseeds were placed at three temperatures of 15, 25 and 40°C with three replications, and germinated seeds were counted daily several times. To calculate D50, several nonlinear regression models including Gompertze, Logestic, Hill (the four-parameter), Richard and Weibull models were used. Moreover, for the purpose of calculating D50, the models presented by Farooq et al. and Ellis and Roberts were used.
Results: The results showed that all nonlinear regression models exhibited suitable fit to germination data. However, logestic, Hill and Weibull showed better predictability of D50, compared with other models. Besides, D50 calculated by the Farooq model was similar to that estimated by nonlinear regression models, whereas D50 estimated by the Ellis and Roberts model was higher than that estimated by other models.
Conclusions: The results of this study showed that both non-linear regression models and the model developed by Farooq could be used to calculate D50 of cottonseed. In general, the results of this study showed that nonlinear regression models could be used to calculate D50. In this research, Logestic, Hill, and Weibull showed good fit for cumulative seed germination data of cotton seeds versus time at different temperatures. These models have coefficients that have a biological concept that includes maximum germination percentage, time to 50% maximum germination and time to start germination. Moreover, when researchers only seek to measure D50 and are not familiar with the statistical software, they can use the empirical formula presented in this research.
 
Highlights:
  1. Calculating D50 in cottonseeds, using different methods.
  2. Using nonlinear regression models to calculate D50 in cottonseeds.
  3. Developing a proper method which is more accurate, and better lends itself to calculating D50 of cottonseeds.

Hasan Teimori, Hamidreza Balouchi, Ali Moradi, Elias Soltani,
Volume 5, Issue 2 (3-2019)
Abstract



Extended abstract
Introduction: Seed germination is one of the first important and complex stages in the plant life cycle and is affected by many hereditary and environmental factors. Various factors affect germination and seedling establishment. Among these factors are the characteristics of the maternal plant (nutrition, genetics), seed treatment stage at harvest time, as well as environmental factors (temperature, water potential, and ventilation and soil compaction). Also, under the influence of seed loss during storage, seed vigor, which is known as the first component of seed quality, decrease. The aim of this study was investigation of germination and biochemichal responses of the aged seed of Fenugreek to different temperature and humidity ranges.
Materials and Methods: This experiment was conducted as a factorial based on a completely randomized design with four replications in the Laboratory of Seed Science and Technology, Faculty of Agriculture, Yasouj University in 2016. The experimental treatments consisted of nine levels of temperature (5, 10, 15, 20, 25, 30, 35, 40 and 45 degrees Celsius), water potential included seven levels (zero (control), -0.2, -0.4, -0.6, -0.8, -1 and -1.2 MPa) and seed aging at two levels (no aged (control) and aged seed).
Results: In this experiment, the effect of seed aging, water potential and their interactions on each environment on germination indices (germination percentage and germination rate, length and weight vigor index) and biochemical indices (soluble sugar, proline, soluble protein and catalase enzymes) of Fenugreek seeds were significant. The results showed that in the aged seed the germination percentage and rate and seedling vigor index tended to decrease with water potential reduce in temperature lower and higher than 20 degrees Celsius, and the amount of biochemical components of the seed (soluble sugar, soluble protein, proline, and catalase enzyme) also increase.
Conclusion: In general, germination and biochemical indices of seed of Fenugreek are sensitive to water potentials, aging, and seed germination temperatures, respectively. In terms of osmotic potential decrese, the germination temperature of less than 20 ° C resulted in increased germination resistance of fenugreek seed to a more negative water potential.
 
Highlights:
  1. Study of germination and biochemical properties of fenugreek seed aged under different level of osmotic potantials and temperatures.
  2. In areas with a lower osmotic potential it is better to cultivate Fenugreek seed at temperatures below 20 °C.

Hosein Sarani, Ebrahim Izadi, Ali Ghanbari, Ali Rahemi,
Volume 6, Issue 1 (9-2019)
Abstract



Extended Abstract
Introduction: In recent years, Japanese morning glory has been recognized as a new weed in some soybean cultivation areas in the Province of Golestan. Japanese morning glory, an annual herbaceous plant, belongs to Convolvulaceae family. Germination is the first step in the competitiveness of a weed in an ecological niche. Among the factors influencing seed germination, temperature and light are the most important environmental factors. The relationship between temperature and germination rate is mainly determined by nonlinear regression, and various models such as dent-like, segmented, beta, and second-order major models are used for this purpose. In this study, we examined the aspects of germination biology of this weed under the influence of temperature and light.
Materials and Methods: In order to investigate the effect of temperature and light on germination of Japanese morning glory, two separate experiments were conducted. Treatments included constant temperature at 7 levels (10, 15, 20, 25, 30, 35, 40) in the first experiment and alternating temperature at 6 levels (30/25, 10/15, 30/20, 35/25, 40/30, 45/35) and light conditions (14 hours of brightness 250 μmoles/m-2-sec-1) and darkness in the second experiment based on a completely randomized design with four replications. The number of germinated seeds was taken up to 4 days after stopping germination every day. Percentage and speed of germination and time reaching 50% germination were calculated. Three models of dent-like, segmented lines and beta were used to determine the cardinal temperature between the temperature and germination rate.
Results: The results showed that temperature had a significant effect on percentage, speed and time taken to reach 50% (D50) of germination of Japanese morning glory. The highest percentage of germination (95%) and germination rate (19.80 seeds per day) were observed in the alternating temperature of 20/30 ° C treatment, respectively. The lowest percentage of germination (83.33%) was observed at alternating temperatures 25/35 °C, and the lowest germination rate (15.10 seeds per day) was observed at 10-20 °C. The segmented lines, dent-like and beta were best fit based on the highest R2adj 0.95, 0.96 and 0.95, respectively. Light had no significant effect on germination, so that germination occurred under both light and dark conditions. According to the results, Japanese morning glory is able to germinate at a wide range of constant and alternating temperatures, although germination is faster at warmer temperatures. On the other hand, the lack of light for germination is another advantage that increases germination, competition, and expansion in agronomic environments.
Conclusion: The findings of the present study suggest that the highest percentage of germination and rate of germination were observed in alternating temperatures of 20/30 °C respectively. Among the nonlinear regression models, the dent-like model represented the best model for describing the germination rate against the temperature in Japanese morning glory. It seems that this weed has better germination at warmer temperatures. Probably from mid-spring following warmer weather, and upon the availability of water, this weed is in a good situation to germinate and compete. It was also found that light had no significant effect on the germination of this weed.

Highlights:
  1. Non-photoblastic seeds
  2. Superiority of dent-like model for predicting germination of Japanese morning glory

Sepideh Nikoumaram, Naeimeh Bayatian, Omid Ansari,
Volume 6, Issue 2 (3-2020)
Abstract



Extended abstract
Introduction: Temperature is one of the primary environmental regulators of seed germination. Seed priming technique has been known as a challenge to improving germination and seedling emergence under different environmental stresses. Quantification of germination response to temperature and priming is possible, using non-liner regression models. Therefore, the objective of this study was to evaluate the effect of temperature and priming on germination and determination of cardinal temperatures (base, optimum and maximum) of Brassica napus L.
Material and Methods: Treatments included priming levels (non-priming, priming with water, gibberellin 50 and 100 mg/l) and temperature (5, 10, 15, 20, 30, 35 and 40 °C). Germination percentage and time to 50% maximum seed germination of Brassica napus L. were calculated for different temperatures and priming by fitting 3-parameter logistic functions to cumulative germination data. For the purpose of quantifying the response of germination rate to temperature, use was made of 3 nonlinear regression models (segmented, dent-like and beta). The root mean square of errors (RMSE), coefficient of determination (R2), CV and SE for the relationship between the observed and the predicted germination percentage were used to compare the models and select the superior model from among the methods employed.
Results: The results indicated that temperature and priming were effective in both germination percentage and germination rate. In addition, the results showed that germination percentage and rate increase with increasing temperature to the optimum level and using priming. As for the comparison of the 3 models, according to the root mean square of errors (RMSE) of germination time, the coefficient of determination (R2), CV and SE, the best model for the determination of cardinal temperatures of Brassica napus L. for non-primed seeds was the segmented model. For hydro-priming and hormone-priming with 50 mg/l GA, the best models were segmented and dent-like models and for hormone-priming with 100 mg/l GA,  the dent-like model was the best. The results showed that for non-priming, hydropriming with water, gibberellin 50 and 100 mg/l treatments, the segmented model estimated base temperature as 3.54, 2.57, 2.34 and 2.34 °C and dent-model estimated base temperature as 3.34, 2.45, 2.21 and 2.83 °C, respectively. The segmented model estimated optimum temperature as 24.62, 23.23, 23.69 and 24.38 °C. The dent-model estimated lower limit of optimum temperature and upper limit of optimum temperature as 20.01, 19.62, 16.25, 19.87 and 28.81, 27.38, 29.58 and 27.31 °C.
Conclusion: Utilizing non-liner models (segmented, dent-like and beta) for quantification of germination of Brassica napus L. response to different temperatures and priming produced desirable results. Therefore, utilizing the output of these models at different temperatures can be useful in the prediction of germination rate in different treatments.
 
 
Highlights:
1-The effect of priming on germination of Brassica napuswas investigated.
2-The temperature range of rapeseed germination of Brassica napus changes with the use of seed priming.

Fatemeh Lkhoshnoodashkarian, Marjan Diyanat, Gorban Noormohammadi,
Volume 7, Issue 1 (9-2020)
Abstract



Extended abstract
Introduction: London rocket is an important winter annual weed of the mustard family (Brassicaceae), which is propagated by seed. Germination of a seed population in response to water potential reduction is modeled using the concept of hydro time. This model has outputs that are physiologically and ecologically meaningful. One of the presumptions of the Hydro time model is the normal distribution of the base water potential among the seed population.
Materials and methods: In order to quantify the germination characteristics and determine the cardinal temperature of germination of London rocket (Sisymbrium irio L.), an experiment was done in 2018 at Science Research Branch, Islamic Azad University, Tehran, Iran. The seeds were placed at constant temperatures (5, 10, 15, 20, 25, 30, 35, 40 and 45 °C). Germination percentage, germination rate, root length, shoot length, seedling length and seedling fresh weight were evaluated. Intersected-lines, dent-like and quadratic polynomial models were used to determine cardinal temperatures. London rocket seed germination was tested across a range of water potential (0, -0.2, -0.4, -0.6 and -0.8 MPa) at the optimal temperature of 22.80 °C. The hydro time model, based on the normal distributions was fitted to data.
Results: Results showed that seed of London rocket did not germinate at temperatures of 5, 35, 40 and 45° C, and 25° C was the best temperature for seed germination (48%). The longest root length (4.49 mm) was observed at 20°C, which did not have significant differences with temperatures of 15 and 25 °C. The longest shoot length (10.19 mm) was obtained at 25 °C and there were not any significant differences among this temperature and temperatures of 15 and 20 °C. Similar trend with the trait of root length was observed for the trait of seedling length. The best model for estimating the cardinal temperatures in London rocket was intersected-line model with respect to coefficient of determination and mean square error. According to the intersected-lines model in London rocket, the minimum, optimum and maximum temperatures were calculated 5.83, 22.80 and 37.91°C. According to the hydro-time model based on normal distribution, the hydro-time constant and the base-water potential (which is a threshold for germination beginning) of London rocket degree were 284.28 (MPa/h) and -1.18 (MPa) at 22.80 °C, respectively.
Conclusions: Knowledge of germination and emergence of weeds also helps to predict the potential distribution to new habitats. The obtained coefficient of determination (0.94) between observed germination and predicted germination showed that the hydro time model based on normal distribution fitted well to germination percentage of London rocket seed. Due to the low hydrotime coefficient of this weed and the drought problem that most provinces face, it is expected that this weed will become more problematic in most provinces of Iran in the future.
 
Highlights:
1- The best temperature for germination of London rocket seed is 25 °C.
2- The best model for estimating the cardinal temperatures in London rocket is intersected-line model
3- The hydro-time constant and the base-water potential of London rocket degree based on normal distribution are 284.28 (MPa/h) and -1.18 (MPa) at 22.80 °C, respectively.

Roya Behboud, Ali Moradi, Hooshang Farajee,
Volume 7, Issue 1 (9-2020)
Abstract



Extended Abstract
Introduction: Sweet corn (Zea mays var. saccharata) is a corn variety that is distinguished from other varieties due to the presence of genes that affect starch production in the endosperm. Given that the most of plants including sweet corn face with problems such as non- uniform germination and poor seed emergence in the early stages of germination. Thus, the use of organic stimulants is one of the ways to reduce the harmful effects of non-biological stresses, increase seed germination, uniform appearance and increase their yield and quality. The present study was carried out to investigate the effect of different concentrations of chitosan on seed germination and some biochemical traits of sweet corn under osmotic potential conditions.
 Materials and Methods: To investigate the effect of chitosan and osmotic stress on germination and biochemical parameters of sweet corn, a factorial experiment was conducted in a completely randomized design with four replications at the Seed Technology Laboratory, Faculty of Agriculture, Yasouj University in 2017. The first factor was osmotic stress at 0, -3, -6, and -9 bar osmotic potentials and the second factor was pre-treatment at five levels of chitosan zero, 0.25%, 0.5%, 0.75% and 1% and one level of distilled water. The seeds were immersed in the desired solutions of chitosan for 3 hours at 25 °C and under dark conditions, and then the pre-treated seeds were germinated under standard germination condition. In each petri dish, 25 seeds were placed on a filter paper and osmotic potential was applied using polyethylene glycol 6000. Seed germination was carried out in the germinator at 25 ± 1 ° C for 7 days under dark conditions. The germination traits and biochemical traits were measured according to standard methods.
Results: Osmotic stress reduced germination percentage and germination rate, seedling vigour length index, germination uniformity coefficient, allometric coefficient, and soluble protein content and also increased the mean germination time, proline, soluble sugar content and hydrogen peroxide. Pre-treatment of seeds with a concentration of 0.5% chitosan increased protein, proline, and soluble sugars content at all osmotic stress levels. At the osmotic stress levels, the highest and lowest levels of hydrogen peroxide respectively were observed in 0.5% chitosan treatment and distilled water treatment. The results showed that pre-treatment with 0.5% chitosan increased germination percentage and rate and seedling vigour length index, and also reduced the mean germination time and malondialdehyde. Pre-treatment of seed with zero and 1% chitosan led to reduction in some of the germination and biochemical traits in comparison with 0.25, 0.5, and 0.75% chitosan.
Conclusions: The results showed that seed treatment with 0.5% chitosan could reduce the harmful effects of osmotic potential on some germination and biochemical traits in sweet corn seedlings and improve seedling growth.
 
Highlights:
1-Chitosan increases the germination percentage and germination rate.
2-Chitosan increases soluble sugars, proline, and soluble protein.
3-Chitosan reduces the amount of malondialdehyde and hydrogen peroxide.

Seyyed Esmaeil Mousavi, Heshmat Omidi, Ayatollah Saeedizadeh, Mehdi Aghighishahverdi,
Volume 7, Issue 2 (3-2021)
Abstract

Extended Abstract
Introduction: Salinity is one of the most harmful factors in the arid and semi-arid regions in the world that influences crop production. Micro-organisms can play an important role in adaptation strategies of plants to stress and by producing of plant growth promotion hormones such as cytokinin, gibberellic acid, auxin, amino acids, and vitamins of B groups help to more growth of the plant and have an important role in increasing of tolerant in plants in unsuitable environments.
Material and Methods: This experiment was established as factorial in a completely randomized design with three replicates at Shahed University of Tehran. The treatments included salinity in four levels (0, 40, 80, and 120 mM NaCl) and biological pre-treatment at eight levels (control: non-inoculation), inoculation with Trichoderma harzianum fungus strain BI, with inoculation with azotobacter bio-fertilizer, inoculation with phosphate bio-fertilizer, inoculation with both bio-fertilizer, a combination of fungus and azotobacter bio-fertilizer, a combination of fungus and phosphate bio-fertilizer, inoculation with fungus and both bio-fertilizer). In this experiment, germination indices, photosynthetic pigments, proline, sodium, and potassium amount, starch, carbohydrate, electrical conductivity, and soluble protein were studied.
Results: The result showed that the interaction effect of biological pre-treatment and salinity was significant on all indices except chlorophyll b and anthocyanin. Treatment of phosphate bio-fertilizer had maximum positive effect on germination percent with increasing salinity. In the co-application of fungus and azotobacter bio-fertilizer treatment, the amounts of chlorophyll a, b, and total chlorophyll in different levels of salinity were more than the other treatments and were incremental with further increasing of salinity level. The highest amount of potassium (4.10 mg/g FW) obtained in the co-application of a fungus with azotobacter bio-fertilizer under 40 mM of salinity and showed 22.02 percent increase in comparison to control. With rising salinity, fungus treatments were the most effective in preventing more increasing sodium amount and azotobacter bio-fertilizer in preventing more reducing potassium. The number of soluble proteins was the highest amount (13.09 mg/g FW) in the co-application of fungus and both bio-fertilizer and showed 38% increase compared to control at the same level of salinity.
Conclusion: The uses of microorganisms reduced the negative effect of salinity and led to the increase of potassium in shoots. Also, utilization of microorganism led to lower electrical conductivity at the highest salinity level compared to control and thus, positively affected germination.
 

Highlights:
1- The effect of bio- primed bacteria and fungus on physiological traits of Pumpkin was investigated seedlings under salinity.
2- Threshold of tolerance of pumpkin seedlings to salinity was improved by increasing K content and reducing Na under bio- primed treatments.
3- Osmolite components of pumpkin seedlings increased under bio- primed treatments.

Amin Haghighi, Yazdan Izady, Miad Haji Mahmoudi, Seyed Amir Moosavi,
Volume 7, Issue 2 (3-2021)
Abstract

Extended Abstract
Introduction: Seed germination and seedling emergence depend on the genetics of plant species and are also influenced by environmental factors. Genetics and nutritional status of the maternal plant, maturity stage at a time of harvest, and environmental factors such as temperature, salinity, drought, and soil fertility influence seed germination. Seed vigor as the main parameter of seed quality decreases due to accelerated aging and storage. The objective of this study was to evaluate the response of accelerated aged Chia seed to different levels of salinity stress.
Material and Methods: Two-way factorial experiment with experimental factors, including five levels of seed accelerated aging durations (0, 24, 48, 72, 96 h) and six levels of salinity stress (0, 50, 100, 150, 200, and 250 mM) was arranged based on a complete randomized block design with three replications. The experiment was conducted at seed technology laboratory Khuzestan Agricultural Sciences and Natural Resources, University of Khuzestan, in 2019.
Results: Results of analysis of variance revealed that the effect of seed accelerating aging, salinity stress, and interaction effects of both factors on all measured germination traits were significant (p<0.01). The best pattern of seed germination was evaluated using three-parameter sigmoid models (logistic, Gompertz, and sigmoidal) and two polynomial models (quadratic and cubic), then the performance of all models was compared using (R2adj), root square of the mean (RMSE) and corrected Akaike index (AICc). Results showed that at accelerated aging duration, models' performance to describe Chia seed germination response varied at different levels of salinity stress. At no aging and 72h of accelerated aging treatments, the sigmoidal model exhibited the best fit on final seed germination, whereas for the other levels of accelerated aging, Gompertz exhibited the best fit. Based on the output of the sigmoidal model, for no aging and 72 hours of accelerated aging, 50% of seed germination was declined at 171.7 and 76.9 mM, respectively, and based on the results of the Gompertz model, after 24 and 48 h of accelerated aging, seed germination declined to 50% at 163.8 and 129.6 mM. Results obtained from fitting polynomial models on seed germination showed that the cubic model provides reasonable descriptions for studied traits such as seed vigor.
Conclusion: Chia seed germination was sensitive to salinity and accelerated aging treatments. At no aging condition, Chia seeds tolerate salinity stress up to 200 mM and were able to germinate. By increasing aging durations, seed germination declined dramatically at all salinity levels and after 96 hours of aging, there was no seed germination at 150 mM.

 
Highlights:
1- The best nonlinear model to study accelerated Chia seed response to salinity stress was selected using the model selection criterion.
2- Chia seed germination threshold to salinity stress was determined for not- aged and aged seeds.

Mohammad Hossein Banakar, Hamzeh Amiri, Gholam Hassan Ranjbar, Mohammad Raza Sarafraz Ardakani,
Volume 8, Issue 2 (3-2022)
Abstract

Extended Abstract
Introduction: Fenugreek, is a medicinal plant that has been considered as a salt tolerant crop. This research was conducted to investigate the effects of salt stress on seedling emergence characteristics and determination of the salt tolerance threshold, declivity of emergence and salt tolerance index of some fenugreek ecotypes.
Material and Methods: Seeds of five ecotypes (Ardestani, Isfahani, hendi, Mashhadi, Neyrizi) were subjected to seven levels of salinity (0.5, 3, 6, 9, 12, 15 and 18 dS/m) in a factorial experiment based on a completely randomized design with three replications. In this research, experimental models (linear, sigmoidal, exponential and multi-component) were used.
Results: Results showed that increasing levels of salinity decreased seedling emergence percentage and rate. In Ardestani and Isfahani ecotypes, increase of salinity up to 3 dS/m had no effect on seedling emergence percentage and thereafter, decreased it, significantly. The maximum seedling emergence percentage (94.62%) belonged to Hendi in control treatment. Hendi ecotype had also the highest emergence percentage (25.81%) at 18 dS/m. Although the highest seedling emergence rate (5.93 per day) belonged to Mashhadi ecotype in control treatment, it didn’t show any significant difference to Hendi, Neyrizi and Isfahani ecotypes. In Ardestani, Mashhadi and Neyrizi ecotypes, seedling length decreased significantly with increasing salinity, but this decrease was not significant in Isfahani ecotype between salinities of 3 and 6 dS/m and also 12 and 15 dS/m. In Hendi ecotype, seedling length at 3 dS/m was similar to control, but higher salinities caused a significant reduction. The maximum value of seedling vigor index (20.44) belonged to Mashhadi and Neyrizi ecotypes in control treatment and Ardestani ecotype had the lowest one (0.39) at 18 dS/m. Results showed that seedling dry weight was first unchanged up to salinity level of 3 dS/m and then gradually decreased with increasing salinity. In Hendi and Neyrizi ecotypes, applying salinities higher than 6 dS/m, gradually decreased seedling dry weight. The salt tolerance threshold of fenugreek for Ardestani, Isfahani, Hindi, Mashhadi and Neyrizi ecotypes was 4.69, 4.90, 7.83, 1.69 and 1.57 dS/m, respectively. Thus, the highest salt tolerance threshold (7.83 dS/m) and the declivity of emergence percentage (7.55%) was obtained from Hendi ecotype and the lowest one from Neyrizi ecotype (1.57 and 4.63 dS/m, respectively). Results of nonlinear models showed that the highest salinity in which  50 percent of seedlings emerged was obtained in Hendi ecotype (14.24 dS/m).
Conclusion: Based on the results, comparing the salt tolerance index of fenugreek ecotypes and also evaluating of some experimental models showed that Hendi ecotype may be introduced as the most tolerant ecotype to salinity stress at the emergence stage to exploit saline soil and water resources.
 
Highlights:
  1. Different fenugreek ecotypes in terms of salinity tolerance at seedling emergence stage were compared using some experimental models.
  2. The salt tolerance threshold, declivity of emergence and also salt tolerance index was reported for some fenugreek ecotypes.

Majid Azimmohseni, Farshid Ghaderi-Far, Mahnaz Khalafi, Hamid Reza Sadeghipour, Marzieh Ghezel,
Volume 9, Issue 1 (9-2022)
Abstract


Extended abstract
  Introduction: Numerous studies are being carried out to reveal the effects of different treatments on the germination of seeds from various plants. The most commonly used method of analysis is the nonlinear regression which estimates germination parameters. Although the nonlinear regression has been performed based on different models, some serious problems in its structure and results motivated researchers to investigate alternative approaches with higher accuracy and precision. The main purpose of the present research is to introduce the alternative parametric time to event model and comparing its reliability to the nonlinear regression in experiments carried out under different conditions.
  Materials and Methods:  The results of four different experiments were used here including the effect of Potassium cyanide on walnut seed germination, the effect of salinity on wheat seed germination, the effect of water potential on corn seed germination and the effect of temperature on cotton seed germination. The nonlinear regression and time to event methods were applied based on the Gompertz model. The obtained standard errors from the two models were further assessed using the Monte-Carlo method.
  Results: Both methods provided well-fitting models according to the MSE and R2   criteria. Although the germination parameters were approximately identical in both models, the standard error of parameters in nonlinear regression was significantly less than those of time to event method except for the experiments in which all tested seeds germinated within the time frame of study so that in the latter case the estimated standard errors in both models were identical. The Monte-Carlo method confirmed the results of the time to event model and reveals the underestimation of the nonlinear regression method in estimating the standard error of parameters.
  Conclusions: Generally, the results of this research showed that the time to event model can be trustfully utilized in seed germination studies under different conditions and treatments. This model, not only provides precise estimates of the germination parameters but also provides the precise standard error of parameters that have important roles in making inferences for parameters. The drc package in R software enables researchers to fit the different time to event models.

 
Highlights:
  1. Using the time to the event model in estimation of seed germination parameters.
  2. Comparing the time to event and nonlinear regression methods in different seed germination experiments.
  3. Using the Monte-Carlo method for investigating the accuracy of results of the used methods.
 
 
 
 
 
 
Enayat Rezvani Khorshidi, Mohammad Reza Jazayeri, Leila Sadeghi, Mohammad Rahmani, Farshid Hasani, Bita Oskoee, Seied Hosein Jamali, Amirali Karimi,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract:
 Introduction: Production of high-quality seeds to stabilize crop yield is an important challenge for breeders. One of the most important answers to this challenge is to clarify the molecular mechanisms associated with seed vigor characteristics. Functional proteins of Cupin superfamily are among the molecules in signaling pathway. Previous research has shown that in maize, a storage protein similar to the functional Cupin superfamily protein called ZmGLP is effective in seed germination. However, in the previous experiments, suitable indicators were not used to assess seed vigor and its relationship with field establishment. So, it is needed to study the performance of ZmGLP in predicting field emergence to complete the previous research.
 Materials and Methods: An experiment was performed on 14 samples of commercial inbred maize lines. In this experiment, in addition to the laboratory evaluation of seed germination, field indices of physiological seed quality including the percentage of seedling emergence in the field, time to 50% seedling emergence, time to 90% seedling emergence, seedling dry weight, seedling height and coefficient of variation of seedling height was also assessed. In the polymerase chain reaction, two pairs of primers (CF / CR primers and IDF / IDR primers) were used to identify the DNA sequence of the Cupin.
Results: The results show that the seeds were different in terms of physiological quality. The lowest percentage of germination in laboratory was related to K1264/1, while the lowest physiological quality of seeds in field indices was observed in K1263/17. The molecular test confirmed the presence of the desired allele at the InDel9 site of vigor-related genes in the three samples of B73, K1264/1, and K1264/5-1, but no amplification band of the InDel9 site was observed in all K1263/17 seed samples. Due to the fact that line K1264/1, which had the lowest germination percentage in the laboratory, had an amplification band at this related site to vigor, it is not enough to rely on the results of the laboratory germination test to investigate the relationship between this gene and seed vigor. The field emergence test and seed vigor test that have a good prediction of field emergence must be used in these studies.
Conclusions: According to the results of this experiment, molecular tests with functional markers based on Indel9 can be used to accelerate the evaluation of vigor, especially when the breeder is breeding a new line or hybrid. It is a useful, rapid, and effective molecular method to predict seed emergence in the field and screen the lines to ensure the genetic strength of the germination of the lines, especially in the temperate germplasms of corn. Finally, it is necessary to determine the threshold of low vigor during seed quality investigation in different cultivars, and relationship between the presence or absence InDel9 site should be considered in future research.

Highlights:
1- The feasibility of using molecular markers to determine the seed vigor of corn lines in the field was studied and optimized for the first time.
2- The results of physiological quality assessment of seeds in the field for the studies related to the relationship between molecular markers and seed vigor were exploited for the first time.
3- The Indel9 site and molecular markers related to seed vigor in the field were introduced.

Haniyeh Saadat, Mohammad Sedghi, Raouf Seyed Sharifi, Salim Farzaneh,
Volume 10, Issue 2 (3-2024)
Abstract

Extended Abstract
Introduction: At present, the drastic increase in population has created an additional burden on the world's agricultural resources. As a result, meeting global food demand and increasing farmers' incomes has become a challenging task. Salinity is one of the abiotic stresses that strongly affect the germination, growth, and yield of crops. Seed priming is a simple technology that hydrates seeds to the point where the metabolic activity for germination is initiated without radicle emergence. In fact, the seeds are physiologically and biochemically prepared to germinate before being placed in their bed and exposed to environmental conditions. This research was conducted to investigate the effect of seed priming with chitosan on germination indices and biochemical traits of beans under salt stress.
Materials and Methods: This experiment was conducted at the University of Mohaghegh Ardabili in 2021 as a factorial in the form of a completely randomized design with four repetitions. The treatments included four levels of salinity (0, 50, 100, and 150 mM) and four levels of chitosan (0, 0.25, 0.50, and 0.75% w/v), all of which were dissolved in 1% acetic acid.
Results: The results showed that salinity stress decreased germination percentage (GP), peak value (PV), and germination value (GV). However, seed priming with different levels of chitosan, especially 0.75% chitosan, improved GP, PV, and GV by 7, 21, and 17%, respectively, compared to the control. Proline content and polyphenol oxidase enzyme activity went up with increasing salinity. However, the application of chitosan 0.75% increased these traits by 34% and 43%, respectively, compared to the control (priming with distilled water). Electrolyte leakage in priming with 0.75% chitosan decreased by 31% compared to the control, which indicates the maintenance of the cell membrane stability. The content of soluble sugars in the treatment with 0.75% chitosan and 150 mM salinity showed an increase of about 78% compared to the control. The highest correlation among traits was observed between peak value and germination coefficient (r2=0.99) and between proline and polyphenol oxidase enzyme (r2=0.92).
Conclusions: The results of this study show that among the different treatments, pre-treatment of seeds with 75 % Chitosan may be considered an effective way to improve germination indices and biochemical characteristics of beans and it can be used as a treatment to deal with salinity conditions in bean seedlings and improve their seedling growth.

Highlights:
  1. Seed priming using chitosan improved germination indices of common bean seeds under salt stress.
  2. Priming with chitosan increased proline and polyphenol oxidase enzyme.
  3. A chitosan concentration of 0.75 V/W showed a better effect on germination indices and biochemical characteristics.
  4. Priming with chitosan can be a suitable method to mitigate the negative effects of salinity, increase germination indices, and improve the biochemical characteristics of beans.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.