Search published articles


Showing 2 results for Functional

Enayat Rezvani Khorshidi, Mohammad Reza Jazayeri, Leila Sadeghi, Mohammad Rahmani, Farshid Hasani, Bita Oskoee, Seied Hosein Jamali, Amirali Karimi,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract:
 Introduction: Production of high-quality seeds to stabilize crop yield is an important challenge for breeders. One of the most important answers to this challenge is to clarify the molecular mechanisms associated with seed vigor characteristics. Functional proteins of Cupin superfamily are among the molecules in signaling pathway. Previous research has shown that in maize, a storage protein similar to the functional Cupin superfamily protein called ZmGLP is effective in seed germination. However, in the previous experiments, suitable indicators were not used to assess seed vigor and its relationship with field establishment. So, it is needed to study the performance of ZmGLP in predicting field emergence to complete the previous research.
 Materials and Methods: An experiment was performed on 14 samples of commercial inbred maize lines. In this experiment, in addition to the laboratory evaluation of seed germination, field indices of physiological seed quality including the percentage of seedling emergence in the field, time to 50% seedling emergence, time to 90% seedling emergence, seedling dry weight, seedling height and coefficient of variation of seedling height was also assessed. In the polymerase chain reaction, two pairs of primers (CF / CR primers and IDF / IDR primers) were used to identify the DNA sequence of the Cupin.
Results: The results show that the seeds were different in terms of physiological quality. The lowest percentage of germination in laboratory was related to K1264/1, while the lowest physiological quality of seeds in field indices was observed in K1263/17. The molecular test confirmed the presence of the desired allele at the InDel9 site of vigor-related genes in the three samples of B73, K1264/1, and K1264/5-1, but no amplification band of the InDel9 site was observed in all K1263/17 seed samples. Due to the fact that line K1264/1, which had the lowest germination percentage in the laboratory, had an amplification band at this related site to vigor, it is not enough to rely on the results of the laboratory germination test to investigate the relationship between this gene and seed vigor. The field emergence test and seed vigor test that have a good prediction of field emergence must be used in these studies.
Conclusions: According to the results of this experiment, molecular tests with functional markers based on Indel9 can be used to accelerate the evaluation of vigor, especially when the breeder is breeding a new line or hybrid. It is a useful, rapid, and effective molecular method to predict seed emergence in the field and screen the lines to ensure the genetic strength of the germination of the lines, especially in the temperate germplasms of corn. Finally, it is necessary to determine the threshold of low vigor during seed quality investigation in different cultivars, and relationship between the presence or absence InDel9 site should be considered in future research.

Highlights:
1- The feasibility of using molecular markers to determine the seed vigor of corn lines in the field was studied and optimized for the first time.
2- The results of physiological quality assessment of seeds in the field for the studies related to the relationship between molecular markers and seed vigor were exploited for the first time.
3- The Indel9 site and molecular markers related to seed vigor in the field were introduced.

Farshid Ghaderi-Far, Majid Azimmohseni, Sima Sheikhveisi,
Volume 12, Issue 1 (9-2025)
Abstract

Objective: This study introduces functional analysis of variance as a method for comparing germination trends under different treatments over a given time interval. This approach not only enables the comparison of treatments over the entire time period but also allows for treatment comparisons at each specific moment in time. Moreover, it identifies critical time points at which the maximum significant difference between treatments occurs, which can serve as novel germination indices.
Method: In this study, real experimental data from four germination studies were analyzed: (1) the effect of temperature on Nigella sativa germination, (2) the effect of salinity stress on Zea mays seed germination, (3) the comparison of germination among different Triticum astivum cultivars, and (4) the effect of water stress on Brassica napus germination. Using spline functions, germination data from these experiments were modeled as a function of time. The results of functional analysis were then used to compare treatments in terms of both germination percentage and germination time across the four experiments.
Results: The results of the functional analysis demonstrated its high efficiency in detecting significant or non-significant differences between treatments throughout the germination period. Furthermore, this method enabled comparisons of germination percentages at any given time point, as well as comparisons of germination times at various germination percentiles, providing detailed insights into the nature of differences among treatments. This approach also facilitated the introduction of new germination indices applicable to different seed types.
Conclusions: Overall, the results of this study indicate that the stepwise functional analysis method introduced here is an effective and precise tool for comparing treatments in germination data. This approach not only enhances treatment comparisons but also provides detailed insights into the nature of differences between treatments. Moreover, it overcomes the limitations associated with using conventional germination indices for treatment comparisons.

Highlights

  • Functional analysis was applied to compare treatments in germination percentage data.
  • The method enabled treatment comparisons in terms of germination percentage at each moment in time, as well as comparisons of germination times at various percentiles.
  • Critical germination times and percentiles at which the maximum differences between treatments occur were introduced as novel germination indices.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.