Search published articles


Showing 2 results for Enterobacter

Marzie Soltani Alikooyi, Ali Abbasi Surki, Mohsen Mobini Dehkordi, Shahram Kiyani,
Volume 6, Issue 2 (3-2020)
Abstract



Extended Abstract
Introduction: Salinity is one of the most serious abiotic stresses, causing instability in germination and seed emergence due to low osmotic potential and ionic toxicity. Development of simple and low-cost biologic methods is essential for short-term management of salt stress. The use of plant growth-promoting rhizobacteria increases the rate and uniformity of germination. This research aimed to investigate the effect of bacterial growth-promoting bacteria on the germination and seedling growth indices of alfalfa c.v. Hamedani in different salinity levels.
Materials and Methods: A CRD factorial experiment with four replications was conducted in Seed Science and Technology Laboratory of Shahrekord University in 2016. The first factor consisted of 6 salinity levels 0, 2.5, 5, 7.5, 10 and 12.5 dS/m created with sodium chloride, and the second was four levels of bacterial pre-treatment: no inoculation with bacteria and biopriming, inoculation of alfalfa seeds with Acinetrobacter calcoaceticus PTCC 1318, Bacillus megaterium PTCC 1250 and Enterobacter aerogenes PTCC 1221. The seeds were treated with bacteria and placed at a 20 °C growth chamber. They were then irrigated with desired solutions depending on the salinity treatment. Germinated seeds were counted daily and the parameters of germination percentage and rate, seedling length, seedling dry weight, vigour index I, II and allometric coefficient were calculated after 10 days.
Results: Salinity levels higher than 10 dS/m reduced germination indices and seedling growth of alfalfa. The highest reductions were obtained for 12.5 ds/m salinity level versus control for germination percentage (10.81%), germination rate (49.48%), plumule and radicle length (13.30% and 28.88% respectively) and vigor index I and II, which were 30.27% and 6.28%, respectively. The seed treated with A. calcoaceticus was able to tolerate salinity stresses more than others. For example, the reduction for the seed treated with A. calcoaceticus was only 4%, compared with non-stressed control. In salinity conditions 2.5 and 5 dS/m, the highest rate of germination was obtained, using A. calcoaceticus bacteria. In addition, the seeds treated with E. aerogenes showed higher stability at different levels of salinity for seedling length traits. The highest vigour index related to the use of A. calcoaceticus in salinity was 7.5 ds/m.
Conclusions: A. calcoaceticus had a significant role in reducing the negative effects of salinity on germination percentage and rate, vigour index I and II and allometric coefficient while E. aerogenes bacteria were more effective in reducing negative effects of salinity on seedling length and dry weight.
 
 
Highlights:

  1. Acinetrobacter calcoaceticus bacterium increased the percentage and rate of germination of alfalfa seeds under salt stress.
  2. Enterobacter aerogenes bacteria efficiently adjusted the negative effects of salinity on alfalfa seedlings length and dry weight.

Khadijeh Momeni, Ali Moradi, Sohrab Mahmoudi, Hojatollah Latif Manesh,
Volume 10, Issue 1 (9-2023)
Abstract

Extended Abstract
Introduction: Due to the fineness of parsley seeds, several problems may arise, such as the impossibility of using planting machines and the displacement of seeds by water, reduced germination and growth due to increased planting depth or lack of seed establishment in the soil, and consequently, increased seeding rate. Therefore, it is necessary to use methods to increase germination ability and improve the establishment of parsley seeds and seedlings in the soil. This experiment aimed to determine the most effective biopriming and gibberellin treatments for better germination and establishment of parsley seeds.
Materials and Methods: In order to determine the best biopriming and gibberellin priming treatments on germination characteristics and establishment of parsley seed, three experiments with four replications were conducted in the seed science and technology laboratory of Yasouj University in 2015 and 2016. The first biopriming experiment was carried out using growth-stimulating bacteria in a completely randomized design with eight treatments including bacterial isolates Pseudomonas fluorescens strain 21, Bacillus biosobetyl strain, Enterobactercus cloac strain 5, also two and three compounds of these bacteria along with control treatment. The second experiment was carried out with five treatments of Trichoderma harziarum (T36, T39, T42, and T43) isolates with control treatment. Finally, the third experiment was performed as a factorial in a completely randomized design with concentrations of gibberellin hormone (0, 50, 100, and 200 ppm) and prime times (6 and 12 hours). The measured traits were seedling length, seedling dry weight, germination percentage, and seedling length vigor index.
Results: The results showed that the best treatments for the first experiment were biopriming with Enterobacter + pseudomonas, for the second experiment biopriming with T36 fungus strain, and for the third experiment 50 ppm of gibberellin prime for 6 and 12 hours. The results showed that the majority of biopriming and hormone prime treatments improved the quality of parsley seeds so that the germination percentage in control seeds was 70%. This value increased by 31% compared to control treatment following priming with growth-stimulating bacteria (Pseudomonas+ Enterobacter), which showed the highest rate among all treatments applied in this study. The use of 50 ppm of gibberellin priming for 6 and 12 hours increased germination by 19% and 14% compared to the control treatment, respectively.
Conclusion: The results of this study showed that biopriming with Pseudomonas + enterobacter had the greatest effect on improving the quality and germination characteristics of parsley seed. In general, biopriming except for T42 fungi, and also gibberellin priming showed improvement in the quality and germination properties of parsley seed.

Highlights:
1. The effects of using biopriming and hormone prime are common, while it is not clear for parsley.
2. Biopriming with Pseudomonas+ enterobacter had the greatest effect on improving the quality and germination characteristics of parsley seeds.
3. Priming with T42 fungus reduced the quality and germination characteristics of parsley seeds.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.