Search published articles


Showing 2 results for Ascorbic Acid

Faegheh Jangjoo, Mehdi Tajbakhsh-Shishvan,
Volume 7, Issue 1 (9-2020)
Abstract



Extended abstract
Introduction: Seed deterioration is a physiological phenomenon that affects all germination, biochemical, cytological, and growth characteristics of plants. So it is necessary to use seed vigor enhancement methods to resolve these problems. One of these methods is the application of seed priming techniques to reduce deterioration effects. Therefore, the present study aimed to investigate the effect of different pre-treatments by using Nano-zinc, ascorbic acid, humic acid, gibberellin and KNO3 on germination indices and chromosomal aberration of aged onion seeds.
Material and Methods: This experiment was performed as factorial based on a completely randomized design with 3 replications (100 seeds per replicate) in the faculty of agriculture at Urmia University. The first factor was the level of aging at 4 levels (control, 12h, 24h, and 48h) and the second factor was seed pre-treatments at 6 levels (control, Nano-zinc (30 mg), ascorbic acid (100 mg), humic acid (150 mg), gibberellin (200 mg/l) and KNO3 (0.1%). Given that the germination was not similar at different levels of aging, the seeds were germinated at control and 12h of aging after 6 days, at 24 and 48h of aging after 8 and 9 days, respectively. Hence, germination percentage, germination rate, normal seedling, mean germination time, and seed vigor were evaluated after the mentioned times. Chromosomal aberrations were also examined.
Results and Discussion: The results showed that the interaction effect of aging and seed pre-treatments on germination indices were significant at %1 probability level. By increasing the period of aging, all germination characters decreased significantly. The highest germination percentage (80%, 70%, 50%) and germination rate (5.350, 3. 316, 1.525 seed/day) were obtained by using Nano-zinc At 12h, 24h and 48h ageing levels. Nano-zinc and gibberellin had the highest effect on seedling vigor and normal seedlings. Seedling vigor increased significantly by using Nano-zinc and gibberellin at 12h (1133, 933.9), 24h (742.9, 692), and 48h (369.9, 323.3). The chromosomal aberration was reduced by using pre-treatment.
Conclusion: In this study, the most effective pre-treatments to improve germination characteristics and reduce chromosomal aberrations were gibberellin (200 mg/l) and Nano-zinc (30 mg). Therefore, it can be stated that the use of Nano-zinc and gibberellin as seed pre-treatments can significantly reduce the effects of deterioration on onion seeds.

Highlights:
1- Nano-Zinc and gibberellin were the most effective priming treatments on seed germination and growth characteristics of the aged onion seeds.
2- Priming treatment reduced the percentage of chromosomal aberration in the onion and the highest effect was obtained using Nano-zinc and gibberellin.

Mansoor Barahouei, Seyyed Gholamreza Moosavi, Mohamad Javad Seghatoleslami, Reza Baradaran, Seyyed Mahdi Javadzadeh,
Volume 9, Issue 2 (3-2023)
Abstract

Extended Abstract
Introduction: Safflower is a plant that has been considered due to its high medicinal and nutritional value, especially in the extraction of edible oils in developed countries. Drought is one of the most important harmful factors in arid and semi-arid regions of the world that affects plant production. Modifiers play an important role in plant adaptation to stress conditions. Among these compounds are the hormone gibberellic acid and the antioxidant ascorbic acid, which increase plant tolerance to adverse environmental conditions. The present study investigated the effect of gibberellic acid and ascorbic acid on seed germination parameters and some enzymatic indices of safflower under drought stress.
Materials and Methods: The experiment was conducted as a factorial based on a completely randomized design with three replications in the Agricultural Science Laboratory of Iranshahr University in 2020. Experimental treatments included three levels of control (pretreatment with distilled water), pretreatment with gibberellic acid and ascorbic acid, and four levels of drought stress (0, -3, -6, and -9 bar). Drought stress was applied using polyethylene glycol 6000. Seed germination was carried out inside a germinator at 25 ° C for 14 days in darkness. Germination traits and enzymatic indices were measured using standard methods.
Results: The results of variance showed that most germination and growth indices of safflower seedlings decreased with increasing drought stress. Also, drought stress led to changes in the activity of antioxidant enzymes. Seed priming with gibberellic acid and ascorbic acid increased germination indices and seedling growth and improved enzymatic activity, including catalase, peroxidase, and superoxide dismutase in comparison with untreated seeds. Priming with gibberellic acid had a significant advantage. Seed priming in drought stress conditions has increased germination rate, protein content, and catalase, peroxidase, and ascorbic dismutase activity, respectively, compared to the control.
Conclusion: In general, seed priming of safflower using gibberellic acid changed the activity of antioxidant enzymes. These activities ultimately moderated the negative effects of drought stress and increased germination parameters.

Highlights:
  1. The role of gibberellic acid and ascorbic acid on safflower seed germination traits was investigated.
The effect of gibberellic acid and ascorbic acid on the activity of antioxidant enzymes and soluble protein during seed germination was investigated.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.